Towards Making a Computer Tutor for
Children of All Ages

Yoshiki Ohshima, Alessandro Warth, Bert Freudenberg
Aran Lunzer, Alan Kay

Presented at the PX/16 workshop,
co-located with ECOOP2016 in
Rome, ltaly July 18 2016

VPRI Technical Report TR-2016-002

Viewpoints Research Institute, 1025 Westwood Blvd 2nd flr, Los Angeles, CA 90024 t: (310) 208-0524

Miguel tl3
Typewritten Text
Presented at the PX/16 workshop,
co-located with ECOOP 2016 in
Rome, Italy July 18 2016

Miguel tl3
Typewritten Text

Miguel tl3
Typewritten Text

Towards Making a Computer Tutor for Children of All
Ages

— A Memo -

Yoshiki Ohshima
Human Advancement
Research Community

Y Combinator Research
yoshiki.ohshima@ycr.org

Alessandro Warth
Human Advancement
Research Community

Y Combinator Research
alex.warth@ycr.org

Bert Freudenberg Aran Lunzer Alan Kay
Viewpoints Research Viewpoints Research Viewpoints Research
Institute Institute Institute
bert@freudenbergs.de aran@acm.org alan@vpri.org

ABSTRACT

One of the primary goals of our research group is to improve
education through computing. We are interested in unleash-
ing the power of the computer to create automated “intel-
ligent” tutor systems (ITS). This paper presents ideas that
may guide the design of such a system, targeting the prob-
lem of computer-programming education in particular. We
also outline a research and development plan to build this
system. While this plan is just a straw-man (there is a lot of
uncertainty), our hope is to get a discussion started on this
important topic.

CCS Concepts

eHuman-centered computing — Interaction paradigms;
Collaborative interaction; e Computing methodologies —
Artificial intelligence;

Keywords

Programming Education, Intelligent Tutor System, Multi-
modal interaction

1. INTRODUCTION

The computer has become an essential part of our civiliza-
tion. However, the way people use this decades-old technol-
ogy still has not unleashed its full potential. As one of the

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than the author(s) must be honored. Abstracting with credit is
permitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from
permissions @acm.org.

PX/16, July 18 2016, Rome, Italy

© 2016 Copyright held by the owner/author(s). Publication rights licensed to
ACM. ISBN 978-1-4503-4776-1/16/07. .. $15.00

DOL: http://dx.doi.org/10.1145/2984380.2984383

VPRI Technical Report TR-2016-002

authors said nearly 20 years ago, and we still believe holds
true: “The Computer Revolution has not happened yet”’[15]].

People are often stuck with mundane applications pro-
vided by others. This is problematic because they cannot
look under the hood [14] to understand how things work, or
modify applications to suit their own needs. Another prob-
lem is that applications are often mere simulations of old me-
dia such as paper print. We expect that treating the computer
as its own medium (and taking advantage of its dynamic na-
ture) will trigger a revolution that rivals the one that was
brought on by the invention of the printing press.

What can we do to accelerate the revolution? From our
observation, the computer revolution is intertwined with the
education revolution (and vice versa). The next steps in both
are also highly overlapped: the computer revolution needs a
revolution in education, and the education revolution needs
a revolution in computing.

We think that, for any topic, a good teacher and good
books can provide an “above threshold” education. For com-
puting, one problem is that there aren’t enough teachers who
understand the subject deeply enough to teach effectively
and to guide children. Perhaps we can utilize the power of
the computer itself to make education better? We don’t hope
to be able to replace good teachers, but can the computer be
a better teacher than a bad teacher?

Why is this a good time to start this project? One main
factor is that computers are getting more powerful, and in
some domains we can say they are getting smarter [8]]. Also,
a new generation of children is growing up in an environ-
ment where computers exist as a commodity. We would like
to seed the idea that such devices are much more capable
than a TV that sometimes responds to your finger flicks.

While CAI (computer-assisted instruction) [5] is applica-
ble to many different domains, the domain we are particu-
larly interested in is early computer programming. In our
experience teaching Etoys, we have observed that children

http://dx.doi.org/10.1145/2984380.2984383

aged 11 and above are capable of making plans and writing
non-trivial programs.

While there have been some attempts to provide remote
tutoring [9]] and self-teaching online courses, we would like
to provide an environment that can motivate not only the top
10% of students, who tend to be strongly auto-didactic any-
way, but also the next 80%, with potentially lower levels of
inner motivation.

Our vision is to have a computer interface where the com-
puter can observe the user’s actions, along with eye gaze,
hand movement and so on, so that it can encourage, suggest,
guide, and teach the user. In other words, we would like to
bring the vision of computer-assisted education to the next
level.

2. APPLICATION TO PROGRAMMING
EDUCATION

Our focus is on computer programming. We have expe-
rience in tile-based (often referred to as block-based) pro-
gramming with children, and believe it has some advantages
for early learners. One reason is that tiles have a lower en-
try barrier when compared to text-based programming; for
a start, the user never has to worry about syntax errors. An-
other reason is that it helps to have instructions from the tutor
in kinesthetic terms; in a tile-based program, we observed
that users can easily understand instructions of forms such
as “move this tile to there”. In contrast, in a text-based pro-
gram, the tutor often dictates what the program should look
like including cryptic symbols and unfamiliar words (e.g.,
fn, 1t, &, **, #!, etc.).

From our experiences with Etoys and other systems, we
learned that most children can follow our instructions to cre-
ate our standard “drive a car” example [7]] (see Figure|I|for a
typical project). The drive-a-car project involves creating a
car widget and a steering wheel widget, and writing a short
program involving those widgets. This example proves to be
an effective starting point, as it is engaging and introduces
many powerful concepts such as turtle geometry, iteration
and conditionals.

We hope to create a system that enables children to learn
and apply these powerful ideas even when they don’t have
us there to guide them.

2.1 Ideas

There are many challenges in arriving at this vision. In
this section, we introduce some of these challenges and pro-
pose ideas for addressing them.

For CALl, it is beneficial to know what the user is trying to
do. Consider our drive-a-car example: even when projects
the learners make vary in details, they are still recognizable
as drive-a-car attempts. Today a human can certainly recog-
nize variations and unfinished drive-a-car projects as such.
We anticipate that a computer algorithm will be able to do
the same and, for a project that is not working, be able to
suggest steps to fix it. Alternatively, as shown by Brown et
al., the system may have a database of common user mis-
takes and advice for correcting them. [[12]

VPRI Technical Report TR-2016-002

wiw O M

ICEERAD % ¢ &

O car v B+
Oearch | |

Q ~scripts

| carsimpleSteering ticking

I carsteeringWithGears inormal |

carempty script |

Q ~basic |

| carmake sound {croak |

| carforward by 45

1 carturnby s

B carsx 587

B carsy 605

B car's heading 7

QO ~tests

Test Yes No
car's Mcolor sees Mcolor

O car simpleSteering | b iticking @ B

carforward by $10

carturn by wheel's heading car's is over color Mcolor

B car'sis under mouse true

B car's obtrudes false
car's overlaps dot

car's overlaps any dot |

Figure 1: The Drive A Car example in Etoys.

How do we sustain the learner’s focus and motivation, and
thus make the entire user experience more fruitful? This will
require some experiments with pedagogy on the computer.
We believe that the situation where the tutor sits next to the
learner is ideal; how would we make a simulation of such a
tutor? Our current thinking is to have a computer avatar or
an agent on screen that helps the user.

Although on-screen agents have had a troubled history
(a famous example being Microsoft’s “Clippy” Office As-
sistant), we still see potential in some existing attempts to
incorporate such agents in an educational setting. Wang
et al. created a system with eye tracking and multiple em-
pathic characters reacting to the user’s eye gaze and inter-
actions [22]. Cycorp experimented with a computer agent
in a learning-by-teaching setting, in which a human learner
is asked to teach elementary mathematics to a computer-
generated avatar who is (i.e., pretends to be) struggling with
mathematics concepts [16]. (See Section for more dis-
cussion.)

We could experiment with different kinds of agents. It
might be more effective for the tutor to appear to be the
same age as the user. Maybe using a non-human creature
would avoid the “uncanny valley” problem. How about hav-
ing multiple agents interacting with the user and each other,
where the user is not the only one who is learning? If the
user sees an agent make mistakes, she might not worry about
making mistakes too.

We could add telemetry sensors to measure the user’s ac-
tivity and state of mind. There are studies that show correla-
tion between pupil dilation and the subject’s focus [13]. We
might use that kind of information to gauge the user’s atten-
tion level. Furthermore, we would like to sense where the
learner’s finger is pointing, and where she is looking. These
are things that a human tutor sitting next to the user can eas-
ily see; we believe a computer could provide better help by
taking these signals into account.

The availability of new kinds of display and user inter-
face technologies provides other opportunities for improving

computing education. In this project, we would like to show
more context and information, things that are typically trans-
mitted via different modes of communication. A live tutor
sitting next to the learner may explain things by drawing di-
agrams, making hand gestures, and so on. The CAI version
of such interactions may involve a head-mounted display
or a wall-sized high-resolution display to show programs,
data, diagrams, etc. in the appropriate context, enabling the
user to put her peripheral vision and spatial memory to good
use [21]].

Furthermore, researchers might come up with entirely new
types of programming systems. In a system where program-
ming is done by assembling physical blocks in an immersive
environment or even in the real world, for example, a good
simulation of an experienced programmer standing next to
the user could be especially effective.

Voice conversation is an important mode of interaction in
a typical human-to-human tutoring scenario. The arrival of
mainstream commercial “AI” applications such as Siri and
Amazon Echo is proof that the state of art in speech technol-
ogy is coming along. However, the user experience in these
systems leaves a lot to be desired. This is especially prob-
lematic in a tutoring setting, where we would like to create
an atmosphere that is conducive for learning. For example,
people tend to get annoyed when a computer agent projects a
know-it-all attitude but has actually misunderstood the user’s
intent. Additionally, because there is constant interaction be-
tween the user and the system, even a rare mistake by an
agent in a long session may break the user’s attention. A
challenge, therefore, is to create an atmosphere where the
user’s “flow” is maintained.

Fortunately, we don’t have to do this work in a vacuum.
We can build on research from communities such as Artifi-
cial Intelligence in Education [1] and Computer Science Ed-
ucation[3]]. From the programming language research field
and the human computer interaction field, we can learn from
research that is concerned with assessing student programs
and providing solutions based on common errors such as [|20]
and [[11].

3. AHYPOTHETICAL PLAN

This is a long-term project with many moving parts and
parallel development efforts. While there is a lot of uncer-
tainty, we think it is fruitful to start the conversation by lay-
ing out a hypothetical plan. The following is such a plan,
which is divided into three phases. We expect each of these
phases to take 2-3 years.

3.1 First Phase

Some of our collaborators have worked on existing edu-
cation software systems, such as Etoys, Scratch and Snap!.
We plan to experiment using these systems in the following
educational scenarios:

e Live Person: Initially, a live tutor will interact with

the learner from a different room. Our collaborators
are teachers with good track records, so we will try to

VPRI Technical Report TR-2016-002

capture their pedagogy in these sessions and observe
what works.

One twist we can try is to have the live person pretend
to be an artificial tutor, an experimental technique used
for the talking typewriter by O. K. Moore et al [|[18]]
and later referred to as “Wizard of Oz”. Some of the
authors were involved in the implementation of an in-
teractive attraction for Disney theme parks, where a
live cast member operates a computer-animated Stitch
character (from the film Lilo and Stitch) with a game
pad and uses a high-pitched voice to act as Stitch to
talk to park visitors [4]. For young children, this was
a very believable and captivating experience. Even
adults were often left wondering whether there was a
human behind it, and even when they knew that there
was a human, it was still an enjoyable experience. We
could build upon this experience to design an avatar.

e Remote Connection: We plan to use a VNC-like con-
nection to share the user’s screen and cursor position,
similar to the Nebraska system on Etoys or the online
support of the Python Tutor [9].

We expect to use laptops for our initial experiments.
Tablets are also a possibility, but the lack of a pointing
device might make it difficult for the learner and tutor
to direct each other’s attention to a specific location.

Based on our colleagues’ experience with person-to-
person interaction in classrooms, the tutor should never
“steal” the mouse or keyboard in an attempt to be overly
helpful [2]. We will take these insights into account
when we design the system.

We will record as much of the interaction between the tu-
tor and the learner as possible (e.g., their conversation, what
is on the screen(s), the program state). We plan to analyze
this information to better understand what works and what
does not work, and make improvements to the system as we
continue on to the next phases.

3.2 Second Phase

We will implement software assistants and gradually move
toward more automated interaction with the user. We also
plan to leverage more telemetric data such as eye gaze, fin-
ger positions, and hand movement. Humans can often detect
whether the other person is focused, or if her mind is wan-
dering. Boredom may be inferred based on the rate of clicks
and eye gaze patterns [22]]. If a human tutor’s suggestions
and actions would be dictated in part by the perceived state
of mind of the learner, we may be able to provide similar
automated reactions from an agent on screen. We will also
explore ways to display the tutor’s fingers on the learner’s
screen without much distraction.

We will also explore the possibility of training an Al pro-
gram to recognize features of user-created projects. For ex-
ample, if our system recognizes that a given project has some
“drive-a-carness”, it may be able to do a better job of helping
its author. This help may come as a suggestion of next steps

for a partially finished project or identifying bugs (similar to
program repair ideas [23])).

Another area we plan to explore in the second phase of
our project is expressiveness. We would like to enable users
to create more advanced projects. As projects become more
diverse, the users’ questions will inevitably go beyond the
capabilities of the system. Eventually, the support of a hu-
man will be needed in such cases (as stated above, we cannot
replace good teachers with a computer). We can try a hybrid
approach where a human tutor oversees multiple learners si-
multaneously. In this setting, unlike Codeopticon [10]], we
can still have automated responders handling the initial con-
versation with users, but a question that is too difficult for an
agent may be elevated to a human tutor.

We aim to design and build a programming language and
environment that is fit for our purposes, based on what we
learn in this phase.

3.3 Third Phase (and Beyond)

We hope to have reliable Al features as well as better
voice recognition and generation by the time we get to this
phase of the project. That being the case, the early part of
programming education can be fully automated, and we can
provide a one-to-one learner to (automated) tutor ratio.

We hope that our new programming system will be used to
develop new curricula, with enough intelligent agent support
to help children around the world even if they lack access to
knowledgeable adults.

4. CONCLUSIONS

Educating the next generation is humanity’s most impor-
tant endeavor, as solving other problems depends on it. We
believe that true computer literacy will give us a good boost,
when the new generation can use computers for making bet-
ter things as well as better decisions, arguments, etc.

In this paper, we laid out a 10-year project plan. In the first
phase, we will experiment with existing systems and curric-
ula to gather data on effective tutor and learner interaction,
and to gain experience in designing the next generation of
intelligent tutoring systems. In the middle phase, we will try
to build a new system from those experiences, and gradu-
ally move toward computer-agent-based interaction. In the
final phase, we will experiment more with the new system
equipped with the agents.

Along the way, we would like to design an entire system,
including the programming language and programming en-
vironment, with the primary goal of supporting education.
This system will have to provide a low entry barrier for the
user. On the implementation side, it will have to be built
with a solid foundation for networking and communication,
and support for logging user actions and program state.

We hope that our system (and systems like it) will mo-
tivate new research by the Programming Experience com-
munity that targets budding programmers, i.e., how can we
tailor the PX to make things easier for the tutor and learner?
Both would certainly benefit from better program visualiza-
tions [19], live programming features [[17]], back in time de-

VPRI Technical Report TR-2016-002

buggers [6], etc.

Finally, we posit that the new generation of computer-
assisted instruction systems can be applied to teach any sub-
ject, anywhere in the world; from The Three R’s (reading,
’riting, and ’rithmetic), to advanced science and mathemat-
ics and beyond.

Some people object to the idea of their children being
taught by computers. Some may say that it is a form of
cultural invasion. Some may say that education is not only
about learning mechanical skills but also something about
providing the moral compass, which should be done through
human interaction.

We embrace these genuine concerns, and accept that our
learning environments must mesh with the core values of
the surrounding society—against the backdrop of our strong
belief that giving all children the opportunity to learn is non-
negotiable.

A related future project might be to help teachers who
need to teach programming in classrom but do not have much
programming experience. In other words, a bad teacher might
become a better teacher with some dynamic assistance from
computers in the classroom.

This is a big challenge that involves new technologies
and research. The AI part alone will need substantial ad-
vances from today’s capabilities. We view this as a long-
term project, with many and diverse collaborations, that will
bring us closer to our goal of meaningful education for chil-
dren of all ages and all countries.

Acknowledgments

We would like to thank the reviewers and attendees of Pro-
gramming Experience 16 workshop (PX/16) for providng
us insightful comments.

S. REFERENCES

[1] International Artificial Intelligence in Education
Society. http://ijaied.org/.

[2] Personal communication with Kazuhiro Abe. The idea
is also described in:
https://github.com/yasslab/
scratch_tutorials.

[3] Special Interest Group on Computer Science
Education. http://sigcse.org/.

[4] Stitch’s Photo Phone. An experimental interactive
attraction. A 2003 Thea Award Winner:
http://theming.directory/thea/.

[5] R. C. Atkinson and D. N. Hansen. Computer-Assisted
Instruction in Initial Reading: the Stanford Project.
Technical Report 93, Institute for Mathematical
Studies in the Social Sciences, 1966.

[6] R. M. Balzer. EXDAMS: Extendable Debugging and
Monitoring System. In Proceedings of the May 14-16,
1969, Spring Joint Computer Conference, AFIPS *69
(Spring), pages 567-580, New York, NY, USA, 1969.
ACM.

[7] B.J. Allen-Conn and K. Rose. Powerful Ideas in the
Classroom. Viewpoints Research Institute, 2003.

[8]
[9]

[10]

(11]

[12]

[13]
[14]

[15]

[16]

D. S. et al. Mastering the game of Go with deep neural
networks and tree search. Nature, 529:484-489, 2016.
P. J. Guo. Online Python Tutor: Embeddable
web-based program visualization for CS education. In
Proceedings of the 44th ACM Technical Symposium on
Computer Science Education, SIGCSE ’13, pages
579-584, New York, NY, USA, 2013. ACM.

P. J. Guo. Codeopticon: Real-Time, One-To-Many
Human Tutoring for Computer Programming. In
Proceedings of the 28th Annual ACM Symposium on
User Interface Software & Technology, UIST 2015,
Charlotte, NC, USA, November 8-11, 2015, pages
599-608, 2015.

B. Hartmann, D. MacDougall, J. Brandt, and S. R.
Klemmer. What would other programmers do:
Suggesting solutions to error messages. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, CHI ’ 10, pages
1019-1028, New York, NY, USA, 2010. ACM.

John Seely Brown, Richard R. Burton, Catherine
Hausmann, Ira Goldstein, Bill Huggins, and Mark
Miller. Aspects of a Theory for Automated Student
Modelling. Technical Report 3459, Bolt, Beranek and
Newman, Inc., 1977.

D. Kahneman and J. Beatty. Pupil Diameter and Load
on Memory. Science, 154(3756):pp. 1583-1585, 1966.
A. Kay. Opening The Hood Of A Word Processor,
1984.

A. Kay. The Computer Revolution Hasn’t Happened
Yet, 1997. A talk given at the OOPSLA 97
conference. Movies are available online.

D. Lenat and P. Durlach. Reinforcing Math
Knowledge by Immersing Students in a Simulated
Learning-By-Teaching Experience. International
Journal of Artificial Intelligence in Education,

24(3):pp. 216-250, 2014.

VPRI Technical Report TR-2016-002

[17] S. McDirmid and J. Edwards. Programming with
Managed Time. In SPLASH Onward! ACM, October
2014.

[18] O. K. Moore and A. R. Anderson. Some Principles for
the Design of Clarifying Educational Environments.
Technical report, Pittsburgh University Learning and
Development Center, 1968.

[19] J. Ou, M. Vecheyv, and O. Hilliges. An Interactive
System for Data Structure Development. In
Proceedings of the 33rd Annual ACM Conference on
Human Factors in Computing Systems, CHI ’ 15, pages
3053-3062, New York, NY, USA, 2015. ACM.

[20] R. Singh, S. Gulwani, and A. Solar-Lezama.
Automated Feedback Generation for Introductory
Programming Assignments. In Proceedings of the
34th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI *13,
pages 15-26, New York, NY, USA, 2013. ACM.

[21] B. Victor. Seeing Spaces.
http://worrydream.com/#! /SeeingSpaces.

[22] H. Wang, M. Chignell, and M. Ishizuka. Empathic
Tutoring Software Agents Using Real-time Eye
Tracking. In Proceedings of the 2006 Symposium on
Eye Tracking Research & Applications, ETRA 06,
pages 73-78, New York, NY, USA, 2006.

[23] W. Weimer, T. Nguyen, C. Le Goues, and S. Forrest.
Automatically finding patches using genetic
programming. In Proceedings of the 31st International
Conference on Software Engineering, ICSE 09, pages
364-374, Washington, DC, USA, 2009. IEEE
Computer Society.

	Introduction
	Application to Programming Education
	Ideas

	A Hypothetical Plan
	First Phase
	Second Phase
	Third Phase (and Beyond)

	Conclusions
	References

