
Viewpoints Research Institute, 1025 Westwood Blvd 2nd flr, Los Angeles, CA 90024 t: (310) 208-0524

The Cuneiform Tablets of 2015

Long Tien Nguyen, Alan Kay

VPRI Technical Report TR-2015-004

Miguel tl3
Typewritten Text

Miguel tl3
Typewritten Text
This paper was presented
at the Onward! Essays track
at SPLASH 2015 in Pittsburgh,
PA, October 29, 2015

The Cuneiform Tablets of 2015

Long Tien Nguyen

University of California, Los Angeles
Viewpoints Research Institute

Los Angeles, CA, USA
long@nguyen.bz

Alan Kay

University of California, Los Angeles
Viewpoints Research Institute

Los Angeles, CA, USA
alan.kay@vpri.org

Abstract
We discuss the problem of running today’s software decades,
centuries, or even millennia into the future.

Categories and Subject Descriptors K.2 [History of Com-
puting]: Software; K.4.0 [Computers and Society]: General

Keywords History; preservation; emulation

1. Introduction
In the year 1086 AD, King William the Conqueror ordered a
survey of each and every shire in England, determining, for
each landowner, how much land he had, how much livestock
he had, and how much money his property was worth [2].
The result of this survey, known as the Domesday Book, is
the oldest public record in England and gives an extremely
detailed glimpse into the sociopolitical structure of England
in the 11th century, a time of great change and upheaval [8].

In the year 1984 AD, the BBC, to commemorate the
900th anniversary of the Domesday Book, commissioned
the creation of the BBC Domesday Project, an interactive
multimedia system intended to be a Domesday Book for the
20th century. Over 1 million people from all over the United
Kingdom participated in creating this historical record for
posterity. Each contributor was free to choose whatever he
or she wished to record; the total sum of the contributions
created a snapshot of everyday British life in 1980s. The
data of the Domesday Project was stored onto two LV-
ROM discs, a custom optical disc format based on the
LaserDisc designed specifically for the Domesday Project.
The LaserDisc format itself was cutting-edge at the time, as it
was the first commercially-available optical disc technology.
The Domesday Project’s software system was designed to run

on an Acorn BBC Master computer, modified with custom
hardware designed specifically for the BBC. The Domesday
Project was completed and published in the year 1986 AD
[10] [36].

In the year 2002 AD, 16 years after the BBC Domesday
Project was completed, the LV-ROM technology and the
BBC Master computer had long been obsolete. LV-ROM
readers and BBC Masters had not been manufactured for
many years, and most existing readers and computers had
been broken, lost, or discarded. Though the LV-ROM discs
containing the Domesday Project were (and still are, as of
2015 AD) intact and readable, the rapid disappearance of
hardware that could read the LV-ROM discs and execute
their contents jeopardized the survival of the Domesday
Project [29]. To save the Domesday Project, the University of
Michigan partnered with the University of Leeds to initiate
the CAMiLEON Project1 to develop strategies and techniques
for digital preservation, and use them for preserving the
Domesday Project [13]. The CAMiLEON staff obtained
a broken Domesday Project device, repaired it, and used
it to extract the contents of the LV-ROM discs. Then the
CAMiLEON staff developed an emulator for the BBC Master
computer and the LV-ROM disc reader that would execute
the contents of the LV-ROM discs, enabling the user to
experience the Domesday Project on a modern computer [28].
Most of the documentation and source code of the Domesday
Project had been lost, and the CAMiLEON staff was forced
to reverse engineer the hardware and the contents of the LV-
ROM discs [9].

Though they successfully produced a prototype of a
working emulator for Microsoft Windows that executed
the Domesday Project, the CAMiLEON project folded af-
ter its funding ended; the CAMiLEON website ironically
went offline not soon afterwards. The Domesday Project
website also went offline after one of its key people, Adrian
Pearce, suddenly passed away [12]. Most of the fruits of the
CAMiLEON Project were not released to the public; the im-
ages from one of LV-ROM discs were uploaded to the BBC
website and the papers from the website were successfully

1 Creative Archiving at Michigan and Leeds: Emulating the Old on the New

VPRI Technical Report TR-2015-004

saved by the Internet Archive. However, an accurate emula-
tion of the original multimedia experience is not available
to the public, and lies somewhere in the decaying private
hard drives of the former CAMiLEON staff; its future yet
lies in jeopardy. By contrast, the Domesday Book of 1086
AD, stored in the National Archives of the United Kingdom
in Kew, is in excellent condition and can be viewed by any
visitor with special permission [29]. The full text (in Latin)
and translation of the Domesday Book can be found online
on several websites. Reproductions are widely available in
print in countless libraries and bookstores. It may be that our
descendants shall know more of England in 1086 AD than of
England in 1986 AD. In this essay, we will try to explore the
ways we can prevent our era from becoming, in the words of
Vint Cerf, a Digital Dark Age.

2. Prehistory
The authors of this essay first met in October of 2011, when
the first author attended a seminar led by the second author
for the introductory computer science course for freshmen
at UCLA. In this lecture, the second author gave a personal
tour of the field of computer science and its history, and
explored the relationship between computer science and
mathematics, science, engineering, and art. We discussed
the immature state of computer science today, comparable
to the state of civil engineering during Ancient Egypt, when
the pyramids were built. The second author opined that a
significant barrier to progress in computer science was the
fact that many practitioners were ignorant of the history of
computer science: old accomplishments (and failures!) are
forgotten, and consequently the industry reinvents itself every
5-10 years.

This interaction got us interested in preserving computing
history for posterity, a problem that is catastrophically over-
looked by the institutions that are supposed to be preserving
today’s heritage. For example, the second author has repeat-
edly attempted to persuade, with little success, the Library
of Congress to create a concerted and systematic effort to
preserve computer software and a catalog of computer archi-
tectures (consisting of architecture specifications in English
and “reference implementations”). The Computer History
Museum, run by “hardware guys,” has an extensive and im-
pressive collection of vintage hardware of all kinds and from
all eras, but it sits there as a collection of lifeless beige boxes.

Our first experience at historical preservation took place in
August of 2013. At the time, the Kleinrock Internet History
Center (KIHC) at UCLA started work on the restoration of
the systems that powered the very first ARPANET node at
UCLA: the SDS Sigma 7 computer that served as the host
and the Interface Message Processor (IMP) that served as
the router for the host. However, the project ran into several
difficulties: first, the 44-year old Sigma 7 and IMP were
in poor condition, and it was difficult to determine what
repairs were necessary to bring the machines back to life.

Secondly, and more importantly, the software for both the
Sigma 7 and IMP was missing, and the 40-year old backup
tapes that were found did not work (although later one of
the original engineers on the IMP, Dave Walden, managed to
find a complete copy of the IMP source code in his personal
archive). The project was put on indefinite hiatus.

Our experiences show that more attention is given to
hardware than to software, in spite of hardware being merely
a “lifeless body” without the “immortal soul” of software
to bring it to life. The “essence” of the ARPANET, and of
many other systems, survives even if all the machines that ran
the original software are gone, as long as the software still
survives. After the KIHC project was shelved, we did some
thinking about what it would take to allow a program to be
usable in the far future, when the hardware “bodies” that the
program once inhabited are long dead and gone.

3. Storage Media
The first problem we have to worry about is the deterioration
of storage media. As we have mentioned earlier, the 40-
year-old backup tapes for the Sigma 7 and IMP machines
were no longer readable. All storage media currently in use
have a fairly short lifespan, which varies widely depending
on various factors, including storage conditions and usage
patterns. For example, the National Media Laboratory reports
that CD-Rs can last from 5 to an estimated 100 years, and
magnetic tape can last from 10 to 50 years, depending
on storage conditions [1]. Therefore, the preservation of
digital data using existing storage media requires constant
maintenance of the digital archive by transferring data from
an old medium to a new medium every few years. This
approach, in our opinion, is too risky, since it requires the
institution doing the preservation to continuously exist and
receive funding.

A better solution was developed by the Long Now Founda-
tion in conjunction with the Los Alamos National Laboratory
and Norsam Technologies. Microscopic text is etched onto
a disk made out of nickel; the resulting “Rosetta disk” can
be read with a microscope at 1000x magnification [24]. A
Rosetta disk is estimated to last from 2,000 to 10,000 years;
a 3-inch disk can contain about 350,000 pages of text [23].
Other institutions are also developing extremely long-term
data storage media [14]. As we are computer scientists, we
shall leave this “piece of the puzzle” to the materials scien-
tists, and assume that they have developed such a “Rosetta
disk” for us. Now we must figure out what to put on it.

4. The Simplest Approach
At first, the reader may think, why can’t we just put the pro-
gram we want to send to the future on the disk, plus the
documentation for the machine that the program runs on?
The “archaeologist of the future” would read the documenta-
tion, write an emulator for the machine, and run the program.
Unfortunately, this naive scheme makes the archaeologist of

VPRI Technical Report TR-2015-004

the future do a lot of work, because real computer architec-
tures have a lot of complexity. Say, for example, we wanted
to emulate a bog standard “Windows on Intel x86” com-
puter. The Software Developer’s Manual [18] for the Intel
x86 architecture has a total of 3603 (!) pages, and that’s just
the CPU alone! Even 8-bit microcomputers from the 1980s
have a lot of complexity. For example, the Commodore 64
Programmer’s Reference Guide [6] is 514 pages long. The
archaeologist of the future would have to read and understand
the whole document, and then write and debug an emula-
tor, taking into account all the edge cases and quirks of the
behavior of a real-world computer. Instead, we should do
most of the “heavy lifting” ourselves, and design a scheme
such that the archaeologist of the future can get the program
working in a single afternoon. But what should we do today,
so that the archaeologist of the future only needs to do a “fun
afternoon’s hack?” We were inspired by several ideas.

5. Some Food for Thought
Guy Steele begins his keynote lecture Growing a Language
[33] at OOPSLA 1998 with a very limited vocabulary. He
adds more complex words to his vocabulary by defining them
in terms of words that already exist in his vocabulary. These
new words, in turn, can be used to define even more complex
words down the line. This scheme vividly makes the case for
programming languages that consist of small kernels that can
be flexibly extended by their users.

The idea of building a language in this manner is not new.
In the 1950s, Hans Freudenthal devised a universal language
to communicate with aliens from outer space called LINCOS
[11]. In his language, he tried to move from visual patterns
to mathematics and then attempted to build everything from
logic, like Russell and Whitehead attempted in their Prin-
cipia Mathematica [31]. Freudenthal makes the assumption
that any aliens that are sufficiently intelligent to be able to
receive radio messages from space must also have discov-
ered mathematics. Freudenthal starts with the concept of a
natural number, which can be represented in a self-evident
manner as a series of repeated radio “beeps” separated by
periods of silence. 0 is represented as no beeps, 1 is rep-
resented as one beep, 2 is represented as two beeps, and
so on. Thus, his “message to aliens” starts by defining the
equals, less-than, greater-than, and arithmetic symbols for
natural numbers. Each new concept is defined in terms of
concepts previously defined; Freudenthal goes on to define
real numbers, variables, propositional logic, and first-order
logic. Then, he defines the concepts of time, behavior, and
physics. Of course, we are not doing anything as ambitious
as sending a message to aliens, so our design does not need
to be so sophisticated.

While Freudenthal was designing LINCOS, another com-
pelling example of a powerful universal language with a very
compact explanation and bootstrap was Lisp by John Mc-
Carthy [27]. In the original formulation of Lisp, McCarthy

showed how a powerful programming language could be built
up starting from only 9 primitives: atom, car, cdr, cons, eq,
quote, cond, lambda, and label. Using only these 9 primitives,
a fully-functioning interpreter for Lisp could be written in
Lisp itself. A thought the second author had back then was
perhaps every piece of digital media should be prefaced by
the simplest explanation possible of a virtual machine that
could run the rest of the media, and that Lisp could be an
excellent candidate.

Lisp, along with Simula [7], arguably the first truly object-
oriented programming language, became the foundation
of thinking about object-oriented programming, especially
dynamic late-bound object-oriented programming, and the
seeds of these ideas were incorporated into the Smalltalk
systems [22] at Xerox PARC in the 1970s. A feature of
the revolutionary Xerox Alto personal computer [34] was
that it required a very powerful but very compact software
system to make it into what would be considered a very early
form of “modern interactive personal computing.” As further
personal computers were developed at PARC, Smalltalk
was made portable by having each “bag of bits,” called
an “image,” that constituted an entire system also carry the
microcode for each machine Smalltalk was to run on [22].
When an image was brought to a particular machine, the
appropriate microcode was extracted and executed to create
a Smalltalk virtual machine2. All the rest of the “bag of
bits” was completely machine independent. For example, the
microcode needed for the Alto was 1024 instructions of 32
bit words: 4 kilobytes. One of the versions of Smalltalk done
for the portable NoteTaker computer ran on an off-the-shelf
chip (an early version of the 16-bit 8086) and the bootstrap
was done with 6 kilobytes of 8086 machine code playing the
role of the “microcode.” All other parts of the system were
machine independent, and the system plus interesting media
could all fit into less than 512 kilobytes [22].

This led to the somewhat interesting conclusion that one
could store media as a “process” if the system that created
it were carried along, and if the “microcode” for the system
were also supplied.

Furthermore, if the “microcode” were thought through
a little more carefully, it would be much more compact to
describe what it did than to describe how to make a Lisp.
The idea then would be to have a Lisp-like system, or in this
case Smalltalk, in the rest of the bag, and the real beginning
part of each bag should be the simplest description of the
simplest machine that would bring the rest of the bag to life.
An important motivation back in the 1970s, which carries
through to the present essay, was that a good goal would be to
entice the programmers of the future into revitalizing a piece
of media by showing them that it could be “an afternoon’s
hack.” Thus we wanted to avoid a lengthy description in the

2 Very much modeled after the hardware of the Burroughs B5000 computer
[3], which introduced a HLL “machine-code” with bytecodes, descriptors
(protected pointers), etc.

VPRI Technical Report TR-2015-004

beginning, and we wanted to avoid requiring the archaeologist
of the future to have to do a lot of work before seeing whether
it would be worthwhile. The neat thing would be that the
tools to modify, extend, and improve the system could be
bundled along with the system as well.

It’s worth looking a little deeper into this approach, which
is at least as “psychological” as it is technical. One question
is whether any of the formal semantics techniques popular
today will survive well enough so that they could be referred
to. The second author began his computing career in 1961,
and more than 50 years later, none of the formal semantics
techniques from the 1960s has survived well enough to be
used without reteaching. Teaching formal semantics to the
archaeologist of the future using English and perhaps logic
would be a hefty document, and for most programmers would
not be regarded as a “fun afternoon’s hack,” or even a “fun
month’s hack.” We fear that today’s favorite formal semantics
techniques, such as denotational semantics, may not survive
even 50 years hence. This is also, sadly, the case for Lisp
(though it is still worth understanding deeply, just because
it was so beautiful and powerful). But most programmers
today don’t understand just how to bootstrap a Lispish kind
of system.

Most programmers today haven’t written a machine code
program and likely have a bit of a fuzzy idea of what machine
code is like. However, universal machines can be both simple
and tiny with respect to features, and it might be possible
to explain the semantics in a single tempting page. The
idea of values, labeling them, transforming them, looping,
sequencing, and so forth, will probably hang on, and these
could be viable contexts for a one-page description. Note that
defining a simple machine with memory locations, simple
operations, and a simple instruction format, is counter to
perennial desires for abstraction and generality. However,
our aim to be both very specific and very brief, and this is
quite justifiable in part because the internals of our media
document can be brought to full life from following just such
a simple one-page description.

In summary, our “message to the future” should consist
of two parts: a “one-page description” of a simple virtual
machine, and a program that will run on the simple virtual
machine.

6. Alternative Views
Now, we could also just describe how a NAND gate works
and describe how the virtual machine works in terms of
NAND gates! This could be a list of logic equations or a
schematic diagram. An example of such a project is Brian
Silverman’s Visual 6502 [20]. He depackaged a 6502 CPU,
extracted the schematics from photographs of the die, and
wrote a gate-level simulator for the schematics, resulting in
a working virtual 6502. Though a NAND gate is easy to
understand, a schematic of NAND gates would be harder to
use, because the archaeologist of the future would have to

transcribe the schematics, and either write a logic simulator or
build a hardware circuit (using whatever technology she will
have in the future) to run the program. However, a schematic
diagram could serve as an alternative specification of the
virtual machine.

Why would we need alternative specifications? To guar-
antee that a “message to the future” is still comprehensible
to future generations, we should write it in several ways.
Ancient Egyptian hieroglyphics were decoded thanks to the
Rosetta Stone, which contained the same text written in three
scripts: Ancient Egyptian hieroglyphics, Demotic script, and
Ancient Greek. Because the Ancient Greek language was
known to modern scholars, they were able to compare the
Egyptian text and the Greek text to figure out the meaning
of the hieroglyphs. Likewise, if we specify the simple virtual
machine several different ways, it will increase the likelihood
of the archaeologist of the future being able to understand
how it works. Our first specification of the simple virtual
machine uses English prose and diagrams. Our assumption
is that basic mathematical and computational concepts, such
as binary numbers, Boolean logic, arithmetic, and Turing
machines will still be known. It seems to us that if knowledge
of these concepts were lost then civilization has collapsed
to the point where there would be no computers at all! We
could then use the logic equations or schematic diagram, as
described in the previous paragraph, as a second specifica-
tion of our simple virtual machine. This could be used to
verify the first specification. Figuring out other ways to de-
scribe the simple virtual machine is an open problem that we
haven’t solved yet. Perhaps there is a more accessible formal
semantics technique that is yet to be invented.

Currently, we only have one specification of the simple
virtual machine, but we are working on figuring alternative
specifications for the next version of our system.

7. The Cuneiform System
Inspired by the ideas above, we set out to build a system for
software preservation, which we christened Cuneiform. It
works as follows: in the present day, a preservationist using
the Cuneiform tools preserves a software program for poster-
ity. Once a program has been packaged with Cuneiform, an
archaeologist of the future spends a fun afternoon “hacking”
on an emulator that brings the packaged program back to
life. The packaged programs will look and behave exactly
as they did in the past. Furthermore, the archaeologist can
do more than just execute the packaged program: the tools
bundled with the program allow the archaeologist to view the
program’s documentation, inspect the program’s behavior,
and even modify or adapt the program.

A program packaged using Cuneiform consists of three
parts: the label, the header, and the program itself. We
describe the parts in the rest of this essay.

VPRI Technical Report TR-2015-004

8. The Label and the Header
Our packaged program is recorded as a sequence of bits,
also called a bitstream, on a suitable digital storage medium.
As we mentioned earlier, we are not solving the problem of
designing a long-lasting digital storage medium in this essay;
we assume that such a medium already exists, such as the
Rosetta disk described above.

Suppose we have a Rosetta disk, and the bitstream of
the packaged program is stored on the obverse side. On the
reverse side is a label with the following information:

1. A short description of the preserved program.

2. Instructions on how to read the data from the storage
medium. These instructions are specific to the storage
medium used.

3. Instructions on how to interpret the bitstream.

Because our label should be readable with the naked eye, it
cannot contain too much information. Therefore, we propose
the following scheme. The bitstream begins with a header
consisting of a two-dimensional, black-and-white bitmap
containing a document that explains how to interpret the rest
of the bitstream. Each bit in the header represents one pixel,
where 0 is white and 1 is black. The label just needs to explain
how to interpret the header as a bitmap in a few sentences plus
a simple diagram. (The width and height of the document is
specified in the label.) A sample label is shown in figure 1.

9. The Chifir Virtual Machine
As we have mentioned earlier, real computer architectures
have too much complexity, and we shouldn’t make the archae-
ologist of the future implement an emulator (or even worse, a
hardware version) of a real machine. Fortunately, any Turing-
complete machine can emulate any other Turing-complete
machine. Therefore we propose the following scheme, illus-
trated in figure 2, which can be described as “one emulator
running on top of another emulator.” In the present, we have
a program that is written for a specific computing platform,
which we labeled Original Platform. At preservation time, we
write an emulator for the original platform that will run the
program to be preserved. The original platform emulator is
designed to run on a simple virtual machine, so simple that it
can be described in one page. The header with the black-and-
white bitmap contains the complete one-page specification for
this virtual machine. Then, in the future, an archaeologist will
read this specification and, in a fun afternoon, use it to hack
together an emulator for this simple virtual machine. The
archaeologist, of course, will implement this simple virtual
machine emulator using whatever programming language
and computing platform she will have in the future, which
we labeled as Future Platform in figure 2.

The only two requirements for the design of this simple
virtual machine are:

1. It can be described in a single Letter or A4-sized page
using English and diagrams. A “one-pager” has a nice
psychological quality of compactness and elegance to
it; we were inspired by the half-page Lisp metacircular
evaluator in the Lisp 1.5 manual [27].

2. It can be implemented in a single afternoon by a reason-
ably competent programmer.

We think that trying to design a “universal” virtual ma-
chine to serve as the simple virtual machine is a bad idea,
because trying to ensure compatibility with the entire design
space of computer architectures will make the resulting “uni-
versal virtual machine” very complicated. In our opinion, this
is the mistake of van der Hoeven et al.’s Universal Virtual
Computer for software preservation [15]. They tried to make
the most general virtual machine they could think of, one that
could easily emulate all known real computer architectures
easily. The resulting design [25] has a segmented memory
model, bit-addressable memory, and an unlimited number
of registers of unlimited bit length. This Universal Virtual
Computer requires several dozen pages to be completely spec-
ified and explained, and requires far more than an afternoon
(probably several weeks) to be completely implemented.

For our prototype implementation, we preserved Small-
talk-72 [32], famous as the very first Smalltalk system.
Smalltalk-72 ran on the Xerox Alto, whose architecture was
a modified Data General NOVA. For the simple virtual ma-
chine, we experimented with several architectures, including
stack machines, accumulator machines, and two-address ma-
chines. Our current design, which sacrifices fast execution
and efficient memory usage for extreme simplicity, is a three-
address machine which we called Chifir3. Our simple virtual
machine is somewhat tailored to the Data General NOVA
architecture and could also be used for other 16-bit mini-
computer architectures of the 1960s and 1970s. A computing
platform that is radically different from the Data General
NOVA would probably need another design for its simple
virtual machine.

A word in the Chifir machine has a length of 32 bits. The
Chifir machine has the following state:

1. A memory M that consists of 211 = 2,097,152 words.

2. A program counter PC with a length of 32 bits.

A Chifir instruction consists of an opcode O and three
operands A, B, and C. An operand may only refer to a memory
location. All instructions must take three operands, however,
some instructions may not use all three operands.

There are 15 instructions, shown in table 1. The notation
M[X] denotes the Xth word of memory. The operator ←
represents assignment, where the contents of the operand on
the left are replaced with the contents of the operand on the
right. Arithmetic and comparison instructions treat words as
unsigned integers from 0 to 232-1.

3 A highly-caffeinated Russian tea.

VPRI Technical Report TR-2015-004

This disk contains Smalltalk-72, one of the earliest object-oriented programming

environments, for the Xerox Alto computer.

The data on this disk is engraved as a series of bits, or zeros (0) and ones (1), in

a clockwise spiral, starting from the outer rim, and can be read with an optical

microscope.The dimensions and layout of the bits are:

The first 350,208 bits on this disk contain a document, encoded as a black and

white bitmap image, 684 pixels in width and 512 pixels in height. This document

explains how to interpret the rest of the bits.

50 μm

30 μm

20 μm

bit 0 bit 1 bit 683

bit 684

bit 349,524 bit 350,207

… …

…

… …

Figure 1. A sample label

VPRI Technical Report TR-2015-004

Preserved Program

Original Platform

In the Present

Preserved Program

Original Platform Emulator

In the Future

Simple Virtual Machine Emulator

Future Platform

we build this part

the future archaeologist builds this part

Figure 2. The Cuneiform architecture

A sample header, containing a Chifir virtual machine
specification, is shown in figure 3.

As we have mentioned before, Chifir is just an incarnation
of the idea of the simple virtual machine, tailored to emulate a
specific platform. Since the Xerox Alto does not have signed
integers, floating point numbers, or many other features,
Chifir does not instructions for signed integer or floating point
arithmetic. To emulate other platforms radically different
from the Xerox Alto, we would need a different kind of
simple virtual machine.

10. After the Afternoon Hack
Perhaps the archaeologist of the future will want to do more
with the preserved program than just run it. Enthusiasts of
today recreate historical machines such as the Antikythera
mechanism and the Difference Engine. We can imagine that
enthusiasts of the future may want to build an Atari 2600 or a
PlayStation, to see how their ancestors entertained themselves.
Therefore, we can include the complete documentation and
specification of the computing platform inside the packaged
program, along with some sort of reader application. Once
the archaeologist of the future writes their “afternoon hack”
and gets the preserved system running, their interest may be
sufficiently piqued to try a more time-consuming project.

The archaeologist may also want to study how the pre-
served program works. Therefore, we should bundle the
source code and development environment for the preserved
program if these are available. However, the source code is
not available for most software, and we should make it easy
for the archaeologist to debug and reverse engineer the pre-
served program. She may also want to extract parts of the
preserved program, such as the bitmaps from a HyperCard
stack or the music from a video game, and we should make it
easy for her to build the tools to do so.

Finally, it is conceivable that the archaeologist may want
to modify the preserved program to adapt it to future needs,
extend its functionality, or even create a “remix.” A modern-
day example of such a remix is Malek Jandali’s Echoes from
Ugarit, a piano arrangement of the Hurrian Songs [21]. Dating
from 1400 BC, the Hurrian Songs are the oldest surviving
collection of written music in the world. We would like to

encourage the Malek Jandalis of the future to improve on our
preserved program in ways we could have never imagined.

It is difficult to imagine what kinds of tools the archae-
ologists of the future may have, but we can help “interface”
their futuristic tools with our present-day tools. After the An-
tikythera mechanism was discovered, it took us a few decades
to figure out what its purpose was and how it worked. Imag-
ine how much easier it would have been if the Greeks had
tightly bundled a detailed manual and maintenance tools with
the mechanism! We bundle a self-contained development
environment with the preserved program. This development
environment also runs on the Chifir virtual machine used to
host the original platform emulator. When the archaeologist
of the future launches the Cuneiform package (after writing
the “afternoon hack”), she is presented with a choice of go-
ing directly to the preserved program or to the development
environment. The archaeologist of the future would then be
able to use the development environment to read the docu-
mentation, study and play with the source code, and most
importantly, write tools to interface the preserved program
and its components with the tools she will have in the future.

11. A Crutch for Preservationists
Though we could take an existing emulator and port it to
our Chifir virtual machine, we found this approach to be
unsatisfactory because most emulators are tightly coupled
to a specific computing platform. Since emulation causes a
slowdown of 2 to 4 orders of magnitude, emulators must take
advantage of all the specifics and quirks of a certain platform
in order to run fast enough on today’s machines. For example,
SheepShaver, an emulator for PowerPC Macintoshes [4], is
tightly coupled to Unix systems on x86. It uses a JIT compiler
to translate PowerPC instructions to x86 instructions and
implements a custom memory manager on top of libsigsegv
for performance reasons. This custom memory manager is a
nightmare to debug and modify, where most changes cause
Heisenbugs that sometimes disappear when a debugger is
attached. To port SheepShaver, we would need to retarget a
C or C++ compiler to our Chifir virtual machine, remove the
JIT compiler and implement a naive PowerPC interpreter, and
port the POSIX environment, libc, SDL, and other libraries

VPRI Technical Report TR-2015-004

T
h

e
 re

s
t o

f th
e

 b
its

 o
n

 th
is

 d
is

k
 c

o
n

ta
in

 a
 p

ro
g

ra
m

 th
a

t e
m

u
la

te
s
 a

 S
m

a
llta

lk
-7

2

s
y
s
te

m
, a

s
 w

e
ll a

s
 a

 d
e

v
e

lo
p

m
e

n
t e

n
v
iro

n
m

e
n

t th
a

t w
ill a

llo
w

 y
o

u
 to

 in
s
p

e
c
t,

m
o

d
ify, o

r e
x
te

n
d

 th
e

 S
m

a
llta

lk
-7

2
 s

y
s
te

m
 a

n
d

 its
 e

m
u

la
to

r. T
o

 ru
n

 th
is

 p
ro

g
ra

m
,

y
o

u
 n

e
e

d
 to

 w
rite

 a
n

 e
m

u
la

to
r fo

r a
 v

irtu
a

l c
o

m
p

u
te

r d
e

s
c
rib

e
d

 in
 th

is
 d

o
c
u

m
e

n
t.

T
h

e
 s

ta
te

 o
f th

e
 v

irtu
a

l c
o

m
p

u
te

r c
o

n
s
is

ts
 o

f M
 a

n
d

 P
C

.

M
 is

 a
 m

e
m

o
ry

 c
o

n
s
is

tin
g

 o
f 2

,0
9

7
,1

5
2

 w
o

rd
s
, w

h
e

re
 e

a
c
h

 w
o

rd
 is

 3
2

 b
its

 w
id

e
.

T
h

e
 re

s
t o

f th
e

 b
its

 o
n

 th
is

 d
is

k
, s

ta
rtin

g
 fro

m
 b

it 3
5

0
,2

0
8

, a
re

 b
ro

k
e

n
 u

p
 in

to

3
2

-b
it w

o
rd

s
, w

h
e

re
 th

e
 m

o
s
t-s

ig
n

ifi
c
a

n
t b

it is
 e

n
c
o

u
n

te
re

d
 fi

rs
t. T

h
e

s
e

 3
2

-b
it

w
o

rd
s
 a

re
 lo

a
d

e
d

 in
to

 m
e

m
o

ry
 s

ta
rtin

g
 a

t m
e

m
o

ry
 a

d
d

re
s
s
 0

.

P
C

 is
 a

 p
ro

g
ra

m
 c

o
u

n
te

r, 3
2

 b
its

 w
id

e
, w

h
ic

h
 c

o
n

ta
in

s
 th

e
 m

e
m

o
ry

 a
d

d
re

s
s
 o

f

th
e

 c
u

rre
n

tly
 e

x
e

c
u

tin
g

 in
s
tru

c
tio

n
. E

x
e

c
u

tio
n

 b
e

g
in

s
 a

t m
e

m
o

ry
 a

d
d

re
s
s
 0

.

A
n

 in
s
tru

c
tio

n
 c

o
n

s
is

ts
 o

f 4
 w

o
rd

s
, w

h
e

re
 th

e
 1

s
t w

o
rd

 is
 th

e
 o

p
c
o

d
e

 a
n

d
 th

e

re
m

a
in

in
g

 3
 w

o
rd

s
 a

re
 o

p
e

ra
n

d
s
. E

a
c
h

 o
p

e
ra

n
d

 s
p

e
c
ifi

e
s
 a

 m
e

m
o

ry
 a

d
d

re
s
s
.

S
o

m
e

 in
s
tru

c
tio

n
s
 d

o
 n

o
t u

s
e

 a
ll 3

 o
p

e
ra

n
d

s
.

A
rith

m
e

tic
 o

p
e

ra
tio

n
s
 tre

a
t w

o
rd

s
 a

s
 u

n
s
ig

n
e

d
 in

te
g

e
rs

 fro
m

 0
 to

 2
³²-1

. If th
e

re
s
u

lt o
f a

n
 a

rith
m

e
tic

 o
p

e
ra

tio
n

 c
a

n
n

o
t fi

t in
 3

2
 b

its
, th

e
n

 o
n

ly
 th

e
 lo

w
e

s
t 3

2
 b

its

a
re

 p
re

s
e

rv
e

d
.

A
, B

, a
n

d
 C

 d
e

n
o

te
 th

e
 fi

rs
t, s

e
c
o

n
d

, a
n

d
 th

ird
 o

p
e

ra
n

d
s
, re

s
p

e
c
tiv

e
ly.

T
h

e
 n

o
ta

tio
n

 M
[X
] d

e
n

o
te

s
 th

e
 X

th
 w

o
rd

 o
f m

e
m

o
ry.

T
h

e
 s

y
m

b
o

l ←
 re

p
re

s
e

n
ts

 a
s
s
ig

n
m

e
n

t, w
h

e
re

 th
e

 c
o

n
te

n
ts

 o
f th

e
 o

p
e

ra
n

d
 o

n

th
e

 le
ft a

re
 re

p
la

c
e

d
 w

ith
 th

e
 c

o
n

te
n

ts
 o

f th
e

 o
p

e
ra

n
d

 o
n

 th
e

 rig
h

t.

P
C

 is
 in

c
re

m
e

n
te

d
 b

y
 4

 a
fte

r e
a

c
h

 in
s
tru

c
tio

n
 is

 e
x
e

c
u

te
d

, e
x
c
e

p
t fo

r in
s
tru

c
tio

n
s

w
ith

 o
p

c
o

d
e

 1
 a

n
d

 2
.

M
[A

] ←
 M

[M
[B

]]

M
[A

] ←
 M

[B
] ×

 M
[C

]

M
[A

] ←
 M

[B
] m

o
d

u
lo

 M
[C

] S
e
m
a
n
tic
s

If M
[B

] =
 0

, th
e

n
 P

C
 ←

 M
[A

]

If M
[B

] <
 M

[C
], th

e
n

 M
[A

] ←
 1

, e
ls

e
 M

[A
] ←

 0

P
C

 ←
 M

[A
]

M
[A

] ←
 P

C

M
[A

] ←
 N

O
T

(M
[B

] A
N

D
 M

[C
])

M
[A

] ←
 M

[B
] +

 M
[C

]

M
[A

] ←
 M

[B
]

M
[M

[B
]] ←

 M
[A

]

M
[A

] ←
 M

[B
] –

 M
[C

]

G
e

t o
n

e
 c

h
a

ra
c
te

r fro
m

 th
e

 k
e

y
b

o
a

rd
 a

n
d

 s
to

re
 it in

to
 M

[A
]

R
e

fre
s
h

 th
e

 s
c
re

e
n

M
[A

] ←
 M

[B
] ÷

 M
[C

]

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1

O
p
c
o
d
e

T
h

e
 v

irtu
a

l c
o

m
p

u
te

r h
a

s
 a

 b
la

c
k
 a

n
d

 w
h

ite
 b

itm
a

p
 d

is
p

la
y. E

a
c
h

 p
ix

e
l is

 re
p

re
s
e

n
te

d

b
y
 a

 s
in

g
le

 3
2

-b
it w

o
rd

, w
h

e
re

 0
 re

p
re

s
e

n
ts

 a
 b

la
c
k
 p

ix
e

l a
n

d
 2

³²-1
 re

p
re

s
e

n
ts

 a

w
h

ite
 p

ix
e

l. T
h

e
 b

itm
a

p
 d

is
p

la
y
 b

u
ffe

r s
ta

rts
 a

t m
e

m
o

ry
 a

d
d

re
s
s
 1

,0
4

8
,5

7
6

 a
n

d
 is

5
1

2
 p

ix
e

ls
 in

 w
id

th
 a

n
d

 6
8

4
 p

ix
e

ls
 in

 h
e

ig
h

t, la
id

 o
u

t a
s
 s

h
o

w
n

 in
 th

e
 d

ia
g

ra
m

 b
e

lo
w

:

T
o

 g
e

t th
e

 m
e

m
o

ry
 a

d
d

re
s
s
 o

f a
 p

ix
e

l, a
d

d
 th

e
 o

ffs
e

t fo
r th

a
t p

ix
e

l to
 th

e
 s

ta
rtin

g

m
e

m
o

ry
 a

d
d

re
s
s
 1

,0
4

8
,5

7
6

. T
h

e
 s

c
re

e
n

 is
 re

fre
s
h

e
d

 w
h

e
n

 th
e

 s
c
re

e
n

 re
fre

s
h

in
s
tru

c
tio

n
 (o

p
c
o

d
e

 1
4

) is
 e

x
e

c
u

te
d

. T
h

is
 in

s
tru

c
tio

n
 b

lo
c
k
s
 u

n
til th

e
 s

c
re

e
n

 h
a

s

b
e

e
n

 re
fre

s
h

e
d

.

T
h

e
 v

irtu
a

l c
o

m
p

u
te

r h
a

s
 a

 k
e

y
b

o
a

rd
. T

o
 re

a
d

 a
 c

h
a

ra
c
te

r fro
m

 th
e

 k
e

y
b

o
a

rd
, th

e

k
e

y
b

o
a

rd
 in

s
tru

c
tio

n
 (o

p
c
o

d
e

 1
5

) is
 e

x
e

c
u

te
d

. If a
 c

h
a

ra
c
te

r fro
m

 th
e

 k
e

y
b

o
a

rd
 is

a
v
a

ila
b

le
, it im

m
e

d
ia

te
ly

 re
tu

rn
s
, s

to
rin

g
 th

e
 c

h
a

ra
c
te

r c
o

d
e

 in
to

 M
[A
]; o

th
e

rw
is

e
, it

b
lo

c
k
s
 u

n
til a

 k
e

y
 is

 p
re

s
s
e

d
. T

h
e

 c
h

a
ra

c
te

r c
o

d
e

s
 fo

r th
e

 k
e

y
b

o
a

rd
 a

re
 lis

te
d

 b
e

lo
w

:

o
ffs

e
t 0

o
ffs

e
t 1

o
ffs

e
t 5

1
1

o
ffs

e
t 5

1
2

o
ffs

e
t 3

4
9

,6
9

6
o

ffs
e

t 3
5

0
,2

0
7

…
…

……
…

4
2

✱)
4

1

3
7

3
5

"(U
p#

4
0

3
9 8

E
n

te
r

B
a

c
k

E
y
e

3
4

3
8

()

S
p

a
c
e

3
2

‘

3
3

○

1
3

3
6

1
0

H
a

n
d

5
6

8 7
5

5

5
1

4
9

/6 ,1

5
4

5
3

4
3

- +3

4
8

5
2

2 .
4

6

5

4
7

4

4
5

5
0

4
4

0

7
0

F

6
9

E

6
5

6
3

=D :

R
ig

h
t

6
8

6
7

5
7

; 9A

6
2

6
6

S
m

ile

<
6

0

C

6
1

B

5
9

6
4

5
8

>

8
4

T S
8

3

7
9

7
7

KR HM

8
2

8
1

7
1

I GO

7
6

8
0

N J
7

4

Q

7
5

P

7
3

7
8

7
2

L

b
9

8

a
9

7

9
3

9
1

Y‾ V[

9
6

9
5

8
5

W U]

9
0

9
4

\ X
8

8

←

8
9

↑

8
7

9
2

8
6

Z

1
1

2
p

1
1
1

o

1
0

7

1
0

5

gn di

1
1

0

1
0

9

9
9

e ck

1
0

4

1
0

8

j f
1

0
2

m

1
0

3

l

1
0

1

1
0

6

1
0

0

h

1
2

6

u

1
2

5

1
1

4

1
2

1

1
2

0

1
2

4

rx s

1
1

8

q

1
2

3

1
1

7

’

1
1

3

? vw t

1
2

2
z

1
1

5

1
1

9

}

1
1

6

{ y

Figure 3. A sample header

VPRI Technical Report TR-2015-004

Table 1. Chifir instruction set
Opcode Semantics

1 PC←M[A]
2 If M[B] = 0, then PC←M[A]
3 M[A]← PC
4 M[A]←M[B]
5 M[A]←M[M[B]]
6 M[M[B]]←M[A]
7 M[A]←M[B] + M[C]
8 M[A]←M[B] - M[C]
9 M[A]←M[B] ×M[C]
10 M[A]←M[B] ÷M[C]
11 M[A]←M[B] modulo M[C]
12 If M[B] <M[C], then M[A]← 1, else M[A]← 0
13 M[A]← NOT(M[B] AND M[C])
14 Refresh the screen
15 Get one character from the keyboard and store it in M[A]

that the emulator needs. Our experience is that writing a
new emulator is easier than trying to decouple the workings
of an existing emulator from the platform it runs on. Since
we assume that computers of the future will be much faster,
we don’t care about optimizing our emulator’s performance.
We just build a naive implementation, which is far simpler
than existing emulators, with their crazy optimizations and
techniques.

The Universal Virtual Computer [15] that we mentioned
above has no higher-level language. To write a program for
the UVC, the preservationist must write individual UVC
instructions in a special assembly language. This is a tedious
and error-prone task, as several generations of assembly
language programmers may attest. To make the job easier,
we developed a high-level language specifically designed for
writing emulators for the original platform. Our language is
an expression-oriented, imperative programming language
where the only data types are bit vectors and arrays of bit
vectors. It features a compact and readable notation for
manipulating bit vectors and incorporates ideas from APL
[19], λ-RTL [30], and Verilog [35].

As we mentioned earlier, if the archaeologist of the future
wants to modify the emulator or build a hardware replica,
she will need to understand how the original platform and its
emulator work. For this purpose, we include the source code
of the original platform emulator and the compiler for our
emulator-writing language.

An emulator written in our emulator-writing language
aims to be an “executable and debuggable specification” that
“separates meaning from optimization.” These two ideas were
guiding principles of the STEPS Project at the Viewpoints
Research Institute [26], that aimed to reinvent personal com-
puting in 20,000 lines of readable and maintainable code.
To achieve such an ambitious goal, the STEPS group de-
veloped many high-level, domain-specific languages. Code

written in these domain-specific languages specified “what”
to do, not “how” to do it, unlike code written in an imper-
ative language like C or C++. To improve the performance
of the domain-specific language, optimization details would
be written separately from the high-level program instead
of obscuring the meaning of the high-level program, thus
separating the meaning from optimization. As our emulator-
writing language is still an imperative language that is an
incremental improvement over writing an emulator in C or
C++, we still have a long way to go until we truly have a
language for “executable specifications.”

12. Current Incarnation
We chose Smalltalk-72 for our prototype implementation due
to its familiarity to us, as one of the authors was one of the
original developers; furthermore, Smalltalk-72 is historically
notable as one of the earliest object-oriented programming
languages. Our emulator-writing language compiler was
written in OMeta/JavaScript and compiled down to the Chifir
virtual machine described in figure 3 and 4. We tested our
design by writing emulators for the Chifir virtual machine in
several languages, including C and JavaScript; it did not take
more than a few hours to write each emulator.

For our development environment, we chose Smalltalk-76
[17], an image-based, object-oriented programming language
and system that was a predecessor to modern Smalltalks. Like
modern Smalltalks, it used bytecodes for portability, but is
much smaller and simpler than modern Smalltalks; a func-
tioning Smalltalk-76 interpreter is given in the appendix of
the Smalltalk-76 paper cited above. Our current implemen-
tation is very slow due to having a bytecode interpreter, but
we plan to improve it by translating Smalltalk-76 bytecodes
directly to Chifir.

VPRI Technical Report TR-2015-004

13. Future Incarnations
We have a few ideas for what we want to do next.

Firstly, we need to do extensive testing of our system. Our
plan is to give our “preserved program” to a large number
of programmers and tell them to “solve this puzzle.” This
group of programmers should have different skill levels
and be familiar with different programming languages and
frameworks. We should observe them “solve the puzzle” and
note what difficulties they face trying to write the “afternoon
hack.” If they find it too difficult or take far more than an
afternoon we should take that into account when designing
the next incarnation of Cuneiform.

Secondly, we plan to add a set of “unit tests” to our system
to simplify the process of writing the “afternoon hack.” These
unit tests would execute when the preserved program is
fed into the “afternoon hack,” and check if the “afternoon
hack” had been implemented correctly. For each opcode, an
instruction with that opcode would be executed and its result
would be compared with the correct value (thus also testing
the comparison instruction). Designing a good set of unit
tests is tricky, because there is a potential for false negatives
(an incorrect emulator can be written so that it passes all
the tests). Nevertheless, even a rudimentary set of unit tests
would be helpful.

Finally, we’d like to develop alternative specifications for
our virtual machine, to serve as a “Rosetta Stone.” As we
mentioned earlier, our current idea is to have the archaeologist
of the future write a logic simulator, and our “program” could
be a set of logic equations.

14. Final Remarks
The scheme we described in this essay is but one proposal,
and is in no way, shape, or form a complete and definitive
technical solution to the challenging and underexplored
problem of ensuring the future of our digital heritage. And
underexplored it is. Whereas library and archival science is
currently just waking up to the idea of preserving digital
artifacts, the computer industry does not pay much attention
to its past, preferring to focus on the next big thing instead.
Thus, software preservation has mostly been the domain of
hobbyists and enthusiasts and mostly focused on video games
and 8-bit microcomputers of the 1980s. Most traditional
libraries and library scientists are focused on preserving
static documents instead of interactive media; the use of
software emulation is still controversial within the fields
of library and archival science [5]. The Computing History
Museum focuses on preserving hardware, but not software.
The Internet Archive and textfiles.com are some of the
few institutions who preserve software, but they mostly
focus on preserving the bits themselves, without focusing
on ensuring that future generations can still make use of the
preserved bits.

There have been preservation efforts previous to our work,
but we find them to be unsatisfactory. The aforementioned

CAMiLEON project [16] proposes to preserve emulators
written in a subset of C along with the preserved program,
but we believe that C is too dependent on the underlying hard-
ware to be practical. Furthermore, many popular languages in
the past have since become completely unknown; we fear that
the same may happen to a language even as well-established
as C. When the second author began his computing career
in 1961, the most popular language was Algol, yet Algol
has fallen completely into disuse in 2015. The aforemen-
tioned Universal Virtual Computer proposes a two-layered
emulation approach similar to ours, where the original plat-
form emulators will run on a Universal Virtual Computer,
but this Universal Virtual Computer is too complex to be
implemented in an afternoon.

Computing is useful, profitable, and fun, but we should
spend a little bit of effort to consider more than the immediate
present and do some serious long-term thinking. As Stewart
Brand, cofounder of the Long Now Foundation, said:

“Civilization is revving itself into a pathologically
short attention span. The trend might be coming from
the acceleration of technology, the short-horizon per-
spective of market-driven economics, the next-election
perspective of democracies, or the distractions of per-
sonal multi-tasking. All are on the increase. Some
sort of balancing corrective to the short-sightedness is
needed-some mechanism or myth which encourages
the long view and the taking of long-term responsi-
bility, where ’long-term’ is measured at least in cen-
turies.”

References
[1] P. Z. Adelstein. Permanence of Digital Information. In Proceed-

ings of XXXIV International Conference of the Round Table
on Archives, XXXIV CITRA, pages 1-7, Budapest, Hungary,
1999.

[2] Anonymous. The Anglo-Saxon Chronicle.

[3] R. S. Barton. A New Approach to the Functional Design of a
Digital Computer. In Papers Presented at the May 9-11, 1961,
Western Joint IRE-AIEE-ACM Computer Conference, pages
393-396, New York, NY, USA, 1961. ACM.

[4] C. Bauer. SheepShaver: an open source PowerMac emulator.
URL http://sheepshaver.cebix.net/.

[5] D. Bearman. Reality and Chimeras in the Preservation of Elec-
tronic Records. Corporation for National Research Initiatives,
1999.

[6] Commodore Business Machines, Inc. Commodore 64 Program-
mer’s Reference Manual. Howard W. Sams & Co., Inc., 1982.

[7] O. J. Dahl and K. Nygaard. SIMULA: A Language for Program-
ming and Description of Discrete Event Systems. Norwegian
Computing Center, 1966.

[8] H. C. Darby. Domesday England. Cambridge University Press,
1986.

VPRI Technical Report TR-2015-004

textfiles.com
http://sheepshaver.cebix.net/

[9] J. Darlington, A. Finney, and A. Pearce. Domesday Redux: The
Rescue of the BBC Domesday Project Videodiscs. Ariadne,
36, July 2003.

[10] A. Finney. The BBC Domesday Project - November 1986. URL
http://www.atsf.co.uk/dottext/domesday.html.

[11] H. Freudenthal. Lincos: Design of a Language for Cosmic
Intercourse, Part 1. North Holland Publishing Company, 1960.

[12] D. Grant. Domesday Preservation Group. URL
http://web.archive.org/web/20100724025051/http:
//www.domesday1986.com/index.html.

[13] M. Hedstrom, C. Rusbridge, P. Wheatley, et al. Creative Archiv-
ing at Michigan and Leeds Emulating the Old on the New.
URL http://web.archive.org/web/20060909234230/
http://www.si.umich.edu/CAMILEON/index.html.

[14] Hitachi. Successful read/write of digital data in fused
silica glass with a recording density equivalent to Blu-
ray Disc. URL http://www.hitachi.com/New/cnews/
month/2014/10/141020a.html.

[15] J. R. van der Hoeven, R. J. van Diessen, and K. van der Meer.
Development of a Universal Virtual Computer (UVC) for Long-
Term Preservation of Digital Objects. Journal of Information
Science, 31(3): 196-208, 2005.

[16] D. Holdsworth and P. Wheatley. Emulation, Preservation and
Abstraction. URL http://sw.ccs.bcs.org/CAMiLEON/
dh/ep5.html.

[17] D. H. H. Ingalls. The Smalltalk-76 Programming System
Design and Implementation. In POPL ’78 Proceedings of
the 5th ACM SIGACT-SIGPLAN Symposium on Principles
of Programming Languages, POPL ’78, pages 9-16, New York,
NY, USA, 1978. ACM.

[18] Intel Corporation. Intel 64 and IA-32 Architectures Software
Developer’s Manual. Intel Corporation, 2011.

[19] K. E. Iverson. A Programming Language. John Wiley and Sons,
1962.

[20] G. James, B. Silverman, and B. Silverman. Visualizing a classic
CPU in action: the 6502. In ACM SIGGRAPH 2010 Talks,
SIGGRAPH ’10, pages 26:1-26:1, New York, NY, USA, 2010.
ACM.

[21] M. Jandali. Echoes from Ugarit. Audio CD. CD Baby, 2009.

[22] A. C. Kay. The Early History of Smalltalk. History of Program-
ming Languages - II, 1993.

[23] K. Kelly. Very Long-Term Backup. URL http://blog.
longnow.org/02008/08/20/very-long-term-backup/.

[24] The Long Now Foundation. The Rosetta Project: Technology.
URL http://rosettaproject.org/disk/technology/.

[25] R. A. Lorie and R. J. van Diessen. UVC: A Universal Virtual
Computer for Long-term Preservation of Digital Information.
IBM Research Report RJ 10338 (A0502-006), 2005.

[26] A. C. Kay, D. H. H. Ingalls, Y. Ohshima, I. Piumarta, and A.
Raab. Proposal to NSF Granted on August 31, 2006. VPRI
Research Note RN-2006-02, 2006.

[27] J. McCarthy, P. W. Abrahams, D. J. Edwards, T. P. Hart, and
M. I. Levin. Lisp 1.5 Programmer’s Manual. The MIT Press,
1962.

[28] P. Mellor. CAMiLEON: Emulation and BBC Domesday.
URL http://www.iconbar.com/articles/CAMiLEON_
Emulation_and_BBC_Domesday/index937.html.

[29] R. McKie and V. Thorpe. Digital Domesday Book lasts 15
years not 1000. URL http://www.theguardian.com/uk/
2002/mar/03/research.elearning.

[30] N. Ramsey and J. W. Davidson. Specifying Instructions’ Se-
mantics Using λ-RTL (Interim Report). University of Virginia
Technical Report CS-97-31, 2003.

[31] B. Russell and A. N. Whitehead. Principia Mathematica.
Cambridge University Press, 1910, 1912, 1913.

[32] J. F. Schoch, An Overview of the Programming Language
Smalltalk-72. ACM SIGPLAN Notices, 14(9):64-73, 1979.

[33] G. L. Steele Jr. Growing a Language. Higher-Order and
Symbolic Computation, 12:221-236, 1999.

[34] C. P. Thacker, E. M. McCreight, B. W. Lampson, R. F. Sproull,
and D. R. Boggs. Alto: A Personal Computer. Xerox PARC
Technical Report CSL-79-11, 1979.

[35] D. Thomas and P. Moorby. The Verilog Hardware Description
Language, 5th ed. Springer, 2002.

[36] P. Wheatley. Digital Preservation and BBC Domesday. In
Electronic Media Group Annual Meeting of the American
Institute for Conservation of Historic and Artistic Works, pages
1-9, Portland, Oregon, 2004.

VPRI Technical Report TR-2015-004

http://www.atsf.co.uk/dottext/domesday.html
http://web.archive.org/web/20100724025051/http://www.domesday1986.com/index.html
http://web.archive.org/web/20100724025051/http://www.domesday1986.com/index.html
http://web.archive.org/web/20060909234230/http://www.si.umich.edu/CAMILEON/index.html
http://web.archive.org/web/20060909234230/http://www.si.umich.edu/CAMILEON/index.html
http://www.hitachi.com/New/cnews/month/2014/10/141020a.html
http://www.hitachi.com/New/cnews/month/2014/10/141020a.html
http://sw.ccs.bcs.org/CAMiLEON/dh/ep5.html
http://sw.ccs.bcs.org/CAMiLEON/dh/ep5.html
http://blog.longnow.org/02008/08/20/very-long-term-backup/
http://blog.longnow.org/02008/08/20/very-long-term-backup/
http://rosettaproject.org/disk/technology/
http://www.iconbar.com/articles/CAMiLEON_Emulation_and_BBC_Domesday/index937.html
http://www.iconbar.com/articles/CAMiLEON_Emulation_and_BBC_Domesday/index937.html
http://www.theguardian.com/uk/2002/mar/03/research.elearning
http://www.theguardian.com/uk/2002/mar/03/research.elearning

	Introduction
	Prehistory
	Storage Media
	The Simplest Approach
	Some Food for Thought
	Alternative Views
	The Cuneiform System
	The Label and the Header
	The Chifir Virtual Machine
	After the Afternoon Hack
	A Crutch for Preservationists
	Current Incarnation
	Future Incarnations
	Final Remarks

