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ABSTRACT

Our team is developing GP, a new blocks language that aims
to be beginner-friendly, like Scratch, yet capable of scaling
up to support larger applications. We hope to allow a world-
wide community of users to share projects, sprites, and code
libraries and to create new ones using a mash-up development
style.

To support such easy sharing and reuse, GP incorporates
a strong notion of modularity. Modularity allows components
created by different users at different times to interoperate
without worrying about conflicts. However, we do not want
modularity to add to the burden of the beginning programmer;
we’d like GP’s module features to stay out of the way until
they are needed.

In this paper, we present the key ideas around the GP
module system. A module in GP is a unit of encapsulated
code and data. It exports a selected set of classes, functions,
and variables, provides a namespace for the code inside, and
may include private helper classes, functions, and variables.
A module can also extend system classes with additional
methods. Such extensions can be used freely within the module
but are not visible outside it. Modules can be saved and
re-loaded, allowing modules to store user-created projects,
sprites, and code libraries.

I. INTRODUCTION

Our team is working on a new block-based language we
are tentatively calling GP (Figure 1). In GP, as in Scratch, a
beginner can start programming without having to learn non-
essentials (i.e, it has a “low floor”). At the same time, as
GP programmers learn and gain experience, they can create
sophisticated applications or even extend the system itself
(“high ceiling”). In other words, we hope to create a blocks
programming language that is as beginner-friendly as Scratch
while being as “general purpose” as languages like Python or
Java.

There are three GP design goals that are especially relevant
to the module system:

• Blocks-Based: We created a new language specifically
designed for visual blocks. The user can write code in
either blocks and text and can view, edit, and debug GP
code as blocks, including GP library code and the GP
programming environment itself.

Fig. 1. A Screenshot of GP. On the left, the authoring tool is shown with a
block palette and a scripting area, which is showing a stack of code in blocks
and in textual code. The project being edited has some colored rectangles and
an explanation in a text box.

• Self-Sufficient: To maximize the potential for learning
about and extending GP, most of the core library and
the entire programming environment is implemented in
GP itself; only the GP virtual machine and low-level
primitives for things such as graphics and file system
operations are written in C. While not all users will want
to explore GP’s implementation, those of us who have
used Smalltalk or Lisp systems know how much one can
learn by “lifting the hood” and studying the workings of
mathematical operations, collections, UI frameworks, and
the programming environment.

• Simple: To encourage budding GP programmers as they
explore and extend the GP system, GP has a carefully
selected set of features. A conscious effort has been made
to eliminate language features that could be obstacles for
learners, while still retaining enough expressive power
to allow GP to be used to build the GP system itself.
For example, while GP is a class-based object-oriented
language, it does not have an inheritance mechanism. GP
system code uses explicit delegation, which we hope will
be easier for learners to read and understand.

In short, GP is a class-based object oriented language
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(somewhat influenced by Smalltalk) without inheritance and
with a syntax that is easily represented as visual, puzzle-piece-
shaped blocks.

A key idea around this new language is that a future
programmer may want to make her applications in the mash-
up style; that is, she would take sprites, projects, libraries and
other kind of components created by her fellow programmers,
and make her own by assembling them.

Imagine how cool it would be if the authoring tool itself
were the product of this process, with modules contributed by
various users! Also, a modular design, where the authoring
tool itself can be controlled programmatically, would allow
users to create tutorials or present a collection of interacting
components written by different users.

Existing blocks languages offer various extension mecha-
nisms. Snap supports libraries of user-defined blocks [1]. An-
droid App Inventor’s components add new blocks appear to the
palette when dropped into the application being constructed,
but as far as the authors can tell does not allow users to
create and share new components [2]. The Scratch Extension
Mechanism[3] comes closer to our vision. However, Scratch
extensions cannot extend the Scratch editor itself and must
be written in an entirely different language (JavaScript), not
Scratch itself.

To facilitate this mode of collaboration, we need a strong
assurance that someone else’s component (or even your own
previously created component) does not break any other com-
ponents in the application. In other words, we would like to
have good modularity in the language.

We looked at some ideas of existing module systems, most
notably from the Newspeak [4] language and the Node.js
Package Manager (npm) [5], and designed a module system
for GP. A unique challenge for GP is to provide a module
system that works, but at the same time does not get in the
way of users, especially beginners.

The remainder of this paper focuses on the design and
implementation of GP module system. In Section II, we briefly
describe the GP language. In Section III, we explain the design
of the module system design and show some examples.

II. GP IN A NUTSHELL

GP is a class-based object-oriented language. Everything
in the system is an object and has a class, which defines its
instances’ behavior. The system contains some classes that are
considered to be system-defined, such as Array and Morph,
and Turtle.

As the system-defined classes are also written in the same
language, their definitions can serve as examples of the GP
language:

defineClass Turtle morph x y direction

method forward Turtle n {
x += (n * (cos direction))
y += (n * (sin direction))
...}

In this code, a class called Turtle is defined with four
instance variables (morph, x, y and direction). Then a
method called forward is defined for the Turtle class. The
method takes an argument and mutates some of the instance
variables.

The following code creates an instance of Turtle and calls
the method on it:

aTurtle = (new ’Turtle’)
forward aTurtle 10

As you can see, the method name (forward comes) first,
followed by the arguments. The method look up is single-
dispatch; the method dictionary of the class of the first
argument is searched to find the actual implementation of the
method and invoked.

Besides methods, GP has functions that are not bound to
a particular class. For example, you can define a function
(that does not belong to any class) called myAdd and call
the function with arguments 3 and 4:

to myAdd a b {
return (a + b)

}
myAdd 3 4

There is no built-in inheritance mechanism between classes,
thus there is no class hierarchy. However, it is desirable to
be able to have one implementation of functionality that is
polymorphic to the instances of different classes. The functions
are used to support this. Namely, when a method look up fails,
the system looks up the function that has the same name,
regardless of the first argument’s class.

As you can see, calling a method and calling a function have
the same syntax: the function name, or the selector, comes first,
followed by arguments. This syntax makes calling a method
and calling a function polymorphic and allows the unbound
functions to work as fallback code.

To have better extensibility, we feel that the system-defined
classes should be open. That is, it should be possible for an
end-user to add a method to a system class such as Array and
extend its vocabulary We will return to this point in Section
III-E.

Classes and functions are first class objects as well. For
example, when the user creates a sprite in the authoring tool,
the authoring tool creates a class for it programatically, and
assigns a name such as MyClass1.

But here is the fundamental problem. If class names in user
extensions were globally visible then one user’s class names
could conflict with those of another user when both users’
modules are loaded into the same project. Likewise, without a
good module system, one user’s extensions to system-defined
classes might conflict with another user’s extensions or change
the behavior of core classes in unexpected ways.

The module system proposed in the next section addresses
this problem by providing a well-defined mechanism for
namespace isolation between modules.
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III. THE MODULE SYSTEM

A module in GP is a unit of encapsulated code and data.
A module may have classes and functions inside, and their
names are unique within the module and don’t collide with
classes and functions in other modules. Classes and functions
that are for use by code outside the module can be exported,
while the rest can be hidden.

The term “module” has been used in different ways in
different systems. Compared to other module systems, GP’s
module system has the following characteristics:

• Instance-based: At runtime, a module is represented as
an object (an instance of the Module class). It differs
from being a compile-time name resolution mechanism,
such as that of the Modula family of languages [6]. It is
more similar to a module in Node.js package manager
(npm), but with a distinct difference: loading a GP
module multiple times creates a fresh instance for each
time, whereas the npm returns the same cached instance.
See below for the rationale for this distinction.

• Local classes and functions are objects: As GP
represents classes and functions as objects (instances
of Class and Function class), a runtime module
instance stores the classes and functions local to it in
its data structures.

• Supports meta-operations: The module system does
not aim to make a module be a total black box. While
local classes and functions cannot be used directly from
the outside in normal circumstances, we feel it essential
to be able to write introspection tool in GP itself that
analyze and manipulate modules.

• Objects can escape: Instances of local classes are
allowed to escape to the outside of the module. For
example, an instance of a private helper class can be
returned from a method call.

• No nesting: At the moment, we are not considering
supporting statically nested module definitions. A module
can use other modules by instantiating them dynamically,
but there is no static hierarchy of modules.

• A module is an object but an object is not a module:
This design is not pursuing a unification between objects
and modules. The description of module as a unit of
encapsulated code and data could also apply to an object,
and some other languages, most notably Newspeak, unify
these concepts.

A. A Module Example

A module definition for a paint editor is shown here to
explain the proposed module system. Following the npm tradi-
tion, a module object behaves as a dictionary in which publicly
visible items are stored. But it also has fixed instance variables
to hold classes and functions and “Expanders” (see Section
III-E) defined in this module. These variables are called
classes, variables, functions and expanders.

module ’PaintEditor’
moduleVariables DefaultPenColor CurrentColor Palette
moduleExports Editor
moduleExports changePenColor

// the initializer of the module
to initializeModule {

DefaultPenColor = (color 0 0 255) // blue
CurrentColor = DefaultPenColor
Palette = (readPNG ’palette.png’)

}
// classes and functions
defineClass Editor a b c
method handMove Editor x y {...}
defineClass Pen a b c
method drawCircle Pen x y r {...}
to changePenColor newColor {

tmpVar = CurrentColor
...
CurrentColor = newColor

}

The module command indicates the start of a module
definition, and the subsequent code up to the end of the
compilation unit (or file) defines the content of the module.

When a module is loaded, an instance of Module class is
created, and its instance variables (classes, variables,
functions, and expanders) are filled with the items
declared in the module definition. In this example, classes
called Editor and Pen are defined, and a function called
changePenColor is also defined in this module. Note that
even a common name such as Editor can be used without
fear of name clashes, because the module provides an isolated
namespace.

The moduleVariables command declares module
variables. In this example, DefaultPenColor,
CurrentColor, and Palette are declared. These
variables are visible from classes and functions defined in the
module.

The moduleExports command specifies the items to be
exported. The arguments are the names of classes, functions, or
variables that are to be exported. Recall that the module object
itself behaves as a dictionary; this dictionary is populated
with items that are visible to the client of this module. In
this example, the Editor class and the changePenColor
function are exported, while the Pen class is not.

The module initializer may take arguments to initialize
module variables:

module ’AnotherEditor’
moduleVariables MyPen

to initializeModule aPenModule {
MyPen = (new (at aPenModule ’Pen’))

}
...

In this example, aPenModule is a module that exports a class
named Pen, and the MyPen module variable is initialized with
an instance of Pen.

Meta-language features to introspect classes and functions,
such as class and functionNamed, accommodate the
notion of modules. For example, there is a fucntion called
class that takes a string as its argument and returns a class
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object. It first searches the list of classes in the module where
the call occurs. If the name does not appear in the module’s
list of classes, then the search is delegated to the top-level
module (explained in section III-B). This allows all modules
to use core classes such as Array.

With this name resolution rule in place, all code in a module
can be written with “short names”; in other words, the creator
of a module need not be concerned with how the module will
be referred to and used.

Loading a module creates a new instance of the Module
class and fresh copies of classes and functions that belong to
the module. This is important as a user may want to create
two copies of the same module and then modify one of them.
Imagine that a user wants to improve the paint editor, using
the existing paint editor to create and edit button icons. In
that case, being able to have two independent copies is very
helpful.

In npm, a require() function call returns the same
cached instance when called with the same argument multiple
times. This allows modules that have circular dependencies
to load, and allows sharing. However, by passing in module
parameters at module creation time (as arguments for the
loadModule function call), or by setting module variables
afterwards, we can build any network of modules. In other
words, creating a fresh instance by default seem to be helpful
for common use cases.

With this code snippet:

painterModule1 = (loadModule ’PaintEditor.gpm’)
painterModule2 = (loadModule ’PaintEditor.gpm’)
painter1 = (new (at painterModule1 ’Editor’))
painter2 = (new (at painterModule2 ’Editor’))

the variables painterModule1 and painterModule2
stores instances of Module initialized with the definition in
PaintEditor.gpm, and painter1 and painter2 each
have an instance of Editor, thus they can have distinct values
for CurrentColor.

The following scenario illustrates how a project would
evolve. Imagine that making improvements to the (current
version of) paint editor requires to change the palette object
as well as code. In that case, the authoring environment would
load two instances of the paint editor module. One of these
would be used as a stable working version to edit the new
palette. The other would be used as the development version.
The authoring environment is able to modify the development
version on the fly so that the programmer could experience
the edit-and-continue style work flow. Even if some change to
the development version causes it to break, the stable version
will be intact.

Note that the module instances don’t need to be stored in
variables. The above code could simply be written as:

painter1 = (new (at
(loadModule ’PaintEditor.gpm’)
’Editor’))

painter2 = (new (at

(loadModule ’PaintEditor.gpm’)
’Editor’))

On the other hand, sometimes it is useful to keep a reference
to the module in a variable. For example, one could call a
function from painterModule1 in the following manner:

// get the function
changeColor = (at painterModule1 ’changePenColor’)
// call it
call changeColor (blue)

or, more succinctly:

call (at painterModule1 ’changePenColor’) (blue)

B. The Top Level Module

GP comes with a set of core classes the define basic
data types (Integer, String), collections (List, Dictionary), the
Morphic UI framework, and the programming environment
itself. These classes are stored in a module, called the top-
level module, that is visible to the code in all other modules.
Similar to the method look up rule, the look up rule for a class
or function first checks the module where the look up starts.
Then, if it does not find an entry there, it looks for it in the
top-level module.

C. Sprites and Projects as Modules

The simple formulation of the module system allows us to
represent user projects as modules. When a user enters the
visual authoring environment and starts making a project, a
module instance is created to store the work in the project.

A project is a set of sprites, each represented as a class,
along with additional code (such as functions) and data. It is
therefore a natural match for being represented as a module.
The user may interactively add more sprites, variables, and
classes. When a project is saved, these user classes and the
serialized sprite data are stored into a module definition. As
sprite properties can be modified by direct manipulation in the
authoring environment, code alone may not be able to recreate
the resulting state. So, keeping the Sprites’ state as serialized
data is necessary.

An open question is that how far such a user can go without
needing to know about the module system. For for simple
projects, the authoring tool can build module “behind the
scenes”, creating classes, variables, and functions inside that
module as the user works and saving the entire project as a
module. A more advanced user can import and use modules
designed to extend GP by making new blocks available in the
palette without needing to understand the module mechanism
in detail.

Ideally, only when a user wants to create GP extensions
that add features to the programming environment or export
libraries of blocks meant to be used by other users would
would they need to learn how modules work in more detail.
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D. A Module Using Another Module

The fact that modules are just objects allows great flexibility
in how one module uses others. Let us say the readPNG
function used in the PaintEditor example was actually
defined in a separate module called PNGReader. The line in
the initializer section for the Palette image might load it
like this:

Palette
= (call (at (loadModule ’PNGReader.gpm’)

’readPNG’) ’palette.png’)

Once the job of reading the PNG file (palette.png)
is done, the instance of PNGReader module is garbage
collected without leaving a trace.

In other cases, an exported class or a function may be stored
into a variable on the client side:

myReader = (at (loadModule ’PNGReader.gpm’)
’readPNG’)

Palette = (call myReader ’palette.png’)

In this example, a function from the PNGReader.gpm mod-
ule is stored into the variable myReader, but the module itself
does not get stored into any variable. Because the function
has a pointer to the module object (as described in III-F),
the module instance will be kept in memory as long as it is
referenced from such a class or a function.

E. Expanders

As mentioned earlier, the core classes in the top-level
module are visible in all modules. If a module defines a
class with the same name as one of the core classes, then
that definition will replace the core class within that module.
However, there are times when a module may simply want to
add a few additional methods to a system class.

The desired behavior is that a method added to a top-level
class by one module should not effect any other modules, even
when another module adds a method with the same name to
the same class. In other words, we would like each module to
be its own isolated universe with it’s own private extensions
to the core classes.

There have been research efforts in the past on this problem,
including Expanders [7] and ClassBoxes [8]. We’ve adapted
the Expander idea to GP.

The original Expander design (for Java) added a new
language construct to specify the scope of expanders. How-
ever,the GP module mechanism already supports isolated code
units, so by using a module as the scope for Expanders,
no new construct is necessary. Any method definition for a
class that is not defined in the module is only visible from
within that module. In other words, such a method definition
automatically becomes an expander.

For example, if you have the following definition in a
module:

method f1 Array x y {..}

and a definition of Array does not exist in the module, f1
becomes an expander. Code defined in the module can call

this method on any instance of Array, but it does not change
the behavior of Array for the code in other modules.

F. Implementation of Modules

In the current implementation, each function or method
holds a pointer to the module it belongs to. When a call
happens, the selector is looked up in the following order, and
the first implementation found is invoked:

1) The expander data structure for the receiver’s class in
the module of the method where the call occurred (this
is statically determined.)

2) The receiver’s original class.
3) The functions of the module where the call occurred

(this is statically determined.)
4) The functions of the top-level module.
As you can see, the look up rule is quite simple. The

only complication over a language such as Smalltalk is that
the method lookup needs to check the expanders for the
module. Also, instead of looking up the superclass chain for
an implementation, GP looks up the functions.

As the lookup result can be cached, the extra step of looking
up in the expander data structure does not incur a significant
performance penalty.

We are aware that the expander concept and unbound
function could be unified. A function defined in a module
could be thought as an expander for the class of nil, and the
lookup mechanism can work accordingly.

IV. FUTURE WORK

Our work is still its initial state, and some features have
yet to be designed, implemented, and tested. Some of the
(obvious) missing pieces are described in this section.

A. Module Dependency

A module can depend on other modules. But since GP mod-
ules are created and loaded dynamically, we cannot statically
determine the dependencies among modules. To detect such
dependencies, when the serializer enumerates objects in the
project (or a module), it needs to check which modules the
objects’ classes belong to. The other modules that the serializer
detects are considered dependencies of the module, and those
modules will be recorded.

B. The Externalized Form of Modules

When a module is saved to disk, the saved content would
need to contain enough information to recreate it in memory
without losing any information.

We will need a proper scheme to identify and store networks
of modules. This is not yet implemented, but here are some
goals we hope to achieve:

• No Loss of Information: Code may be written visually
as well as textually. Data may be assembled by directly
manipulating objects. The textual code with the module
keyword in this memo represents code written textually
and when that is what the user wrote, it should be
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faithfully stored. At the same time, there is data (such as
pictures, movies, sound, etc.) that also need to be saved.

• Version Control and Dependency: As noted above, a
module may depend on other modules. These dependen-
cies will need to include the identification of the modules’
versions.

• Self-contained “Timeless” module files: Also, we would
like to support the notion of “timeless” software, at least
as good as Smalltalk’s image files are capable of. We
would like to be able to “bundle” all dependencies into
one blob (file) and have a guarantee that that one blob can
be run on a conformant virtual machine bit-identically,
perhaps many, many, years later.

• The Community Site: Eventually, we envision a shared
GP repository of projects, sprites and libraries with a
complete history of past versions, a sort of hybrid of
GitHub and the Scratch web site.

Toward these goals, one possible design of such a file is
as follows: The file that represents a module would be a
zip compressed directory structure. A sub-directory stores the
resource data files, and the textual module definition. Another
sub-directory stores a binary file that is the pre-processed file,
in which resource files are internalized and code is parsed
and converted to the runnable form. For a module to be
properly stored and reloaded, some meta-information such as
the version (perhaps the ancestor tree of versions in SHA1),
and its dependencies will be needed.

The module might contain another optional sub-directory to
contain other modules, thus the resulting zip file can be fully
self-contained.

To ensure that a version of a module is uniquely identified
globally, we would have a naming scheme. It may be assumed
that a user (at least when publishing things) registers himself
at the central server and obtains a unique user name. The user
then is responsible for naming published projects uniquely.
And we may assume that we don’t support branches of a
project but only a linear sequence of versions of a project.
Thus, a project, (or a module), can be identified as a triple of
(user name, project name, version) from the program. In the
above, we used a simple file name, such as “PaintEditor.gpm”,
as the descriptor of a module; in the real system, we may
specify a module with the fully qualified name.

V. CONCLUSION

This paper presented the design of the GP module system.
We believe this design is simple and flexible, yet provides
sufficient isolation to allow modules to be mixed together
without fear of unexpected interactions.

The GP programming environment makes the concept of
modules invisible to beginners by automating module creation.
Our implementation shows that this module design does not
impose significant complexity or performance penalties on the
GP execution model.

In the future, we hope to use modules to support sharing
of components, block libraries, and even programming en-
vironment extensions. We plan to facilitate sharing of such
things within the GP community by creating a shared module
repository.
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