
Viewpoints Research Institute, 1025 Westwood Blvd 2nd flr, Los Angeles, CA 90024 t: (310) 208-0524

 Call by Meaning

Hesam Samimi, Chris Deaton, Yoshiki Ohshima,
Allesandro Warth, Todd Millstein

VPRI Technical Report TR-2014-003

squeak
Typewritten Text
To appear in ACM International Symposiumon New ideas, New Paradigms, and Reflectionson Programming & Software, Onward! 2014.

Miguel tl3
Typewritten Text

Call by Meaning

Hesam Samimi
Communications Design Group,

SAP Labs
hesam@ucla.edu

Chris Deaton
Cycorp

cdeaton@cyc.com

Yoshiki Ohshima
Viewpoints Research Institute

yoshiki@vpri.org

Alessandro Warth
Communications Design Group, SAP Labs

alex.warth@sap.com

Todd Millstein
University of California, Los Angeles

todd@cs.ucla.edu

Abstract
Software development involves stitching existing compo-
nents together. These data/service components are usually
not well understood, as they are made by others and often
obtained from somewhere on the Internet. This makes soft-
ware development a daunting challenge, requiring program-
mers to manually discover the resources they need, under-
stand their capabilities, adapt these resources to their needs,
and update the system as external components change.

Software researchers have long realized the problem why
automation seems impossible: the lack of semantic “under-
standing” on the part of the machine about those compo-
nents. A multitude of solutions have been proposed under
the umbrella term Semantic Web (SW), in which semantic
markup of the components with concepts from semantic on-
tologies and the ability to invoke queries over those concepts
enables a form of automated discovery and mediation among
software services.

On another front, programming languages rarely provide
mechanisms for anchoring objects/data to real-world con-
cepts. Inspired by the aspirations of SW, in this paper we
reformulate its visions from the perspective of a program-
ming model, i.e., that components themselves should be able
to interact using semantic ontologies, rather than having
a separate markup language and composition platform. In
the vision, a rich specification language and common sense
knowledge base over real-world concepts serves as a lingua
franca to describe software components. Components can

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Onward! 2014, October 20–24, 2014, Portland, OR, USA.
Copyright c© 2014 ACM 978-1-4503-3210-1/14/10. . . $15.00.
http://dx.doi.org/10.1145/2661136.2661152

query the system to automatically (1) discover other com-
ponents that provide needed functionality/data (2) discover
the appropriate API within that component in order to ob-
tain what is intended, and even (3) implicitly interpret the
provided data in the desired form independent of the form
originally presented by the provider component.

By demonstrating a successful case of realization of this
vision on a microexample, we hope to show how a program-
ming languages (PL) approach to SW can be superior to ex-
isting engineered solutions, since the generality and expres-
siveness in the language can be harnessed, and encourage PL
researchers to jump on the SW bandwagon.

Categories and Subject Descriptors D.2.12 [Interoper-
ability]: Interface definition languages; F.3.1 [Specifying
and Verifying and Reasoning about Programs]: Specifica-
tion techniques

Keywords language design; program composition; auto-
mated discovery; specifications; meanings; semantic web

1. Introduction
We build software out of existing components. Two reasons
may be attributed to this phenomenon.

First, in order to make useful tools, developers have to
build artifacts that work within common platforms, such
as within a web browser, or in connection to a database
backend. There are many parts that need to be in place to
make that work, and so there is an incentive to utilize what
is already a working part of the ecosystem.

Second, developers desire to make use of the plethora of
components that are available on the Internet: libraries, web
services, applications, etc. Such reuse allows programmers
to save time by avoiding the need to reinvent the wheel, and
it enables new kinds of networked systems and applications.
We expect the level of connectedness to increase over time.

Unfortunately, the result is that software today is incredi-
bly complex and fragile. In order to make a simple web app,

VPRI Technical Report TR-2014-003

for instance, the programmer must first discover the many
components that are needed: various frontends, databases,
libraries, virtual machines, and so on. Once the components
have been identified, the programmer must install and set
them up appropriately and find out how they can be used. If
a single component is not set up correctly, the system won’t
work. Even harder can be the task of enabling data compat-
ibility among components, as interfaces and data units and
formats may not be compatible out of the box.

Even when success is achieved after all of this arduous,
error-prone, and manual burden, the resulting artifact re-
mains incredibly fragile. If assumptions about the environ-
ment in which the software runs changes, e.g., one compo-
nent undergoes a slight interface change or becomes unavail-
able, the entire system will grind to a halt.

We can examine the offline and online aspects of the
component discovery and data adaptation problems. The
current best practices to enable offline discovery is for the
websites offering software libraries and services to include
natural language descriptions of what is offered. The human
programmer then manually searches with keywords on a
search engine like Google to get a list of matches and then
uses human judgment to decide what components to use. It is
plain to see that the approach is not amenable to automation
and scalability.

In the online context, we continue to rely upon referring
to components by name: if one knows the name of the com-
ponent needed, one can refer to and obtain it. This agree-
ment on names is the basis of how we can refer to a variable
in scope in a procedural language and what many publish-
subscribe systems [7] use to perform matchmaking when
forwarding published data to subscribers. The flaw, however,
is that relying upon naming conventions does not scale be-
yond local applications. At the scale of an ecosystem as vast
as the Internet, parties never find consensus on names 1.

Similarly, the current practice for data adaptation is to
manually browse developer forums such as Stackoverflow to
learn how to use a component or find some adaptor code to
convert the data to the desired format. One may also attempt
to write procedures to dynamically detect the received data
formats and handle the task of conversion to the desired
forms. Both approaches are fragile and non-scalable (i.e., not
amenable to automation and infeasible to handle manually as
the number of cases grows).

Our goal is to move away from these current practices
and veer toward programming paradigms that automate and
facilitate the tasks of component and data discovery and
data adaptation. Moreover, if we take the fragility problem
and the idea of networked applications seriously, these tasks
must be done online (i.e., dynamically and continually),
rather than offline (i.e., only once during development).

1 An odd statement, as the Internet works based on names (DNS), but the
reason is that all is routed through a central authority (ICANN).

We observe that the source of the problem preventing
us from realizing these goals is that software components
themselves have no real semantic “understanding” of one
another, forever requiring manual human intervention to in-
terpret and act. Thinkers in the field of AI such as Min-
sky [19] and Lenat [12] have long argued the importance
of common sense reasoning in building intelligent systems.
The idea is that in human interactions much more informa-
tion is exchanged implicitly than explicitly, because of the
vast, shared, everyday knowledge of the real world. For our
purposes, we consider “common sense knowledge” to be any
piece of knowledge widely shared by some community.

Suppose, for example, I would like to tell you about a
film, but cannot seem to remember its name. Despite that,
there are many ways I can still convey to you the film in
question, as I can leverage your preexisting knowledge on
the subject: actors in the film, the city where the story takes
place, a synopsis of the film’s plot, etc. Similarly, the ex-
changes among automated systems must leverage common
sense to achieve true scalability and robustness.

Imagine that our computers were equipped with as much
common sense and knowledge about the real world as the
typical human. In that case, components could simply “talk”
to each other, understand, and be understood. Because of the
existing knowledge they have about the world they live in,
they could make judgments, connections, and conclusions
about what they hear from one another. The tasks of finding
the right service or data component and adapting the data
based on the individual’s needs would become possible en-
tirely dynamically and automatically.

In this paper, we present a multi-tiered vision for tack-
ling the discovery and compatibility problems along these
lines. The vision tiers get progressively more ambitious and
is premised on the existence of a real-world ontology and
specification language that can be universally adopted as a
lingua franca of meanings to tie software to real-world con-
cepts. We explore a programming model in which a theorem
proving engine operating over that language of meanings is
employed in order to bridge the understanding gap among
components.

In the base tier of the vision, instead of relying on names
to refer to what is sought (access by name), components
can be annotated with specifications over this meanings lan-
guage to advertise themselves and invoke queries over the
same language to discover other available components. This
is part of a process which we dub call by meaning.

In the second tier, components also advertise their own
API and query over a discovered component’s API, using
the same meanings language. In this way, the customer of
a service/data component not only discovers it using the
meaning language but also discovers the right API within
the component for achieving a given task.

In the third tier, components can remove their sensitiv-
ity to the formats and units of the data obtained from the

VPRI Technical Report TR-2014-003

discovered component by relying on the theorem prover to
semantically adapt the data based on their individual needs,
e.g., converting the units, implicitly. In the fourth, most am-
bitious tier, all of the above occurs dynamically, as opposed
to only statically as auto-suggestions provided by the IDE
during development.

We report on our initial investigations related to this vi-
sion. To play around with these ideas we developed a pro-
totype programming environment called Navā, in which
we employ Cyc [25]—a common sense ontology, specifi-
cation language, and theorem prover—as the meanings lin-
gua franca. We also applied Navā to partially address two
scenarios posed in the Semantic Web Service Challenge
(SWSC), a popular testbed for researchers aiming to address
some of the challenges we have mentioned earlier.

The paper is organized as follows. Sec. 2 discusses the
problem of flexibly composing software components. In
Secs. 3 and 4 we overview the existing practices and dis-
cuss how they fall short. In Sec. 5 we discuss our vision for
a programming model that can overcome the challenges. An
account of our initial investigation toward realizing this vi-
sion is presented in Sec. 6. Our experiment with the SWSC is
summarized in Sec. 7. We discuss the challenges for achiev-
ing our vision in Sec. 8. Finally we compare with related
work and conclude.

2. Problem
We are interested in relieving the programmer of the bur-
den of discovering data or service components and enabling
compatibility between the two ends when exchanging data.
Below we list several tiers of our vision to achieve the level
of “loose coupling” we believe is needed for combating the
problem in a truly automation-friendly and scalable manner.

Tier I: Component Discovery We want to automatically
discover a desired data or software component. To make
this possible, the programmer must be able to describe
what a desired component does or represents, i.e., “I need
a component that does X” rather than “I need that com-
ponent.” Note that simply using names for this purpose
does not scale. After all, components are developed in-
dependently and often in isolation, so a name is not a
reliable identifier of a component.

Tier II: + API Discovery Once we identify and obtain the
desired component, how should we communicate with it?
Knowing its interface (e.g., that the component responds
to a message foo()) doesn’t help unless we know what
the methods are supposed to do. Therefore we need to
discover “How can I get this to do X?”

Tier III: + Data Adaptation At the scale of the Internet,
one does not get to control at all times exactly how
various information is represented, nor how often the
format changes. A component must be able to interpret
and adapt the data it receives from other components, no

matter how that data was originally presented, i.e., “What
is the value of X in the format/units that I care about?”

Tier IV: All Online We may want to perform the above
tasks offline, that is as suggestions automatically pro-
duced by the IDE as a development aid. Such an ability
would already be a huge leap over the current practices.
Yet it would still leave the problem of fragility of exist-
ing software in tact; APIs and formats in which data is
represented evolve all the time and the execution envi-
ronment may undergo changes, so something that works
today may not work tomorrow. Thus, we need to achieve
the above goals online, that is, the components do it au-
tonomously and on a dynamic and continual basis.

The above vision is somewhat of a holy grail in software
development, and any amount of progress, even only on the
base tier, can profoundly improve the state of art.

3. The Semantic Web
Researchers have been pondering the grand vision of the In-
ternet of software services and the automation of discov-
ery, mediation, and composition among them, for several
decades under the umbrella of the Semantic Web (SW). We
believe that it is necessary for the programming languages
community to join the Semantic Web efforts. Being born
from outside of the language community, the Semantic Web
solutions approach the problem as an “afterthought.” That is,
it is naturally their assumption that we have to work with ex-
isting programs written in existing programming languages,
which obviously themselves lack any semantic IQ. Thus vir-
tually all solutions are posed as semantic annotations writ-
ten in markup languages such as OWL-S (Semantic Markup
Language for Web Services) / WSDL-S (adding semantics
to Web Services Description Language) to attach meanings
to existing code [6, 20]. As a consequence, the integration of
software components occurs at a stage that is entirely sepa-
rated and outside of the programs themselves.

On the other hand, interesting possibilities arise when the
notion of semantic discovery and composition is part of the
software development process, and even part of the program-
ming model itself. For example, an IDE can perform seman-
tic search for desired components during development time,
and programs themselves can reason semantically in order
to dynamically interoperate with other components. Such
an integration allows the discovery and composition mech-
anisms to leverage the generality of the programming lan-
guage and allows the software itself to control this process,
for example based on its runtime state. We take the first steps
toward such a vision in this paper.

4. Manual Search / Access by Name
In programming languages, the current practice of obtaining
and accessing a software entity offline (during development)
works by manual search. For the online scenario, we rely on

VPRI Technical Report TR-2014-003

agreement on names. Both practices clearly fail to achieve
the goals presented in the previous section.

Consider an example of a GUI clock application shown
in Figure 1, which displays a wall clock showing the cur-
rent time. The application has two main components. The
green object on the left is the source of time data, say
www.time.gov, produced in some format, say number of sec-
onds passed since 1970 (Unix epoch time). The clock hands
on the right, representing the current hours, minutes, and
seconds, are the consumers of that data. Given the current
time they determine their rotation angle.

Figure 1. Clock example

For clarity, let us operate in the familiar JavaScript (JS)
language. For the example in Figure 1, the source of time on
the left is represented as a JS object with a single method
now, returning the current time data:

clock = {

now: function () {

return Math.floor(

new Date (). getTime () / 1000)

}

}

And thus the consumers of this component need to refer
to it and access and invoke its method to obtain the needed
information. Again we can consider both the offline and on-
line scenarios. First, the developer searches on Stackover-
flow “how to get current time in JavaScript.” Let us imagine
she eventually comes across the code snippet above that does
the trick, so she imports this code in her program. Now she
is ready to use that component by referring to it by name:

var epoch = clock.now()

setAngleBasedOnEpoch(epoch)

The flaws are evident:

Problem of “Object Discovery” The consumer had to per-
form manual search to find the right component and use
human judgment to evaluate the choices. The drawback
is also apparent in the online view of the problem. Even if
the component with the clock functionality is already in

scope in the dynamic environment of the consumer com-
ponent, the only way to “discover” it is by agreement on a
name to look for (here clock). The problem with reliance
on naming agreements isn’t restricted to common pro-
gramming languages. For example, in a common form
of the publish-subscribe paradigm [7] the messages get
routed from publishers to subscribers based on classifica-
tion using topic terms. Again, the flaw is that agreement
on topic names does not scale to the world at large.

Problem of “API Discovery” Once the clock component
is found, how can we know with certainty that the infor-
mation we want can be obtained by invoking that compo-
nent’s now method?

Problem of “Data Adaptation” Without inspecting and
understanding the code, the consumer is taking a leap
of faith in assuming that now() returns the current Unix
epoch time. It’s possible that the data comes in another
format, say in string form YYYY:MM:DD:HH:MM:SS, or even
a voice message reading the current time in Spanish!

In the next section, we share a vision for a programming
model that can address these challenges and is founded on
facilitating a form of real understanding between objects.

5. Call by Meaning
Let’s do a thought experiment. Imagine our programming
environment comprehends English and has as much com-
mon sense about the real world as the programmer. Assum-
ing English as a common language of meanings we can now
redo the clock example while avoiding the problems de-
scribed above.

We will allow the producer of data to annotate it with
a description in English. A reserved function named spec

returning a string array can be used to make statements about
the meaning of the object and some of its API:

clock = {

now: /* same as before... */,

spec: function () {

return ["this represents a clock",

"now represents the current time in terms

of seconds since 1970, i.e., Unix epoch time"]

}

}

Here the underlined this and now appearing in the spec-
ifications are logical variables referring to the object being
produced—i.e., this—and its method now, respectively. The
component is stating that this represents a clock and it has
a property called now that provides the Unix epoch time.

Given this description, consumers no longer need to as-
sume knowledge of the name given to the component or any
parts of its internal state. The programming environment can
discover this component for them, given their needs in terms
of meanings. They may also access various APIs by meaning
rather than by name. Let us see how.

VPRI Technical Report TR-2014-003

We add to our language the ability to query a common
sense knowledge base and theorem prover K about a given
object’s specifications. If KB denotes K’s entire common
sense knowledge base about the world, So the meanings that
object o has claimed by running its spec function, and Q the
query asked about the object o, then

K.ask(o,Q)

denotes asking K the logical question “Can you prove (KB
∧ So) implies Q?” Within the query Q, the argument object
o can be referred to by the logical variable that.

Additionally, we give our system the ability to keep a
repository of available objects which have been annotated
with spec meanings. We then provide another query method

K.find(Q)

which denotes asking the system to find an object o in the
repository for which K.ask(o,Q) returns a value with a truth
value of true in JavaScript. In the case of multiple matches,
find may return any one choice. The undefined value is
returned when no matches are found.

5.1 Object Discovery
As an example, the call to find in the code line below
discovers an object acting like a clock, should one exist in
the environment.

var clock = K.find("is that capable of telling

the current time?")

Because our fantastical theorem prover K understands
real-world concepts and knows a thing or two about clocks,
it can deduce that the clock object in the repository is indeed
capable of telling the current time. Thus the find call above
will return the clock object, that the clock hand GUI objects
can employ.

5.2 API Discovery
We also allow the query Q to mention a set of logical free
variables V , in which case the call to ask is interpreted as
“Can you find a model—i.e., a value binding for each of
the variables in V —such that (KB ∧ So) implies Q?” If the
query cannot be satisfied (either because it is unsatisfiable
or because K simply cannot prove either way), ask returns
the value false. Otherwise ask returns a dictionary object
representing the model that makes the query true.

For example, once we have discovered the clock object,
we can invoke an ask call to discover the method in its API
that would provide the current time data. The invocation to
ask in the example below returns a model with a binding for
methodName, which can then be referred to in the program,
as done at the end of the expression of line 2.

1 if (clock) {

2 var epochMethodName = K.ask(clock , "what

is the name of that’s property (methodName)
which represents the current time in Unix epoch

format?"). methodName

3 var epochMethod = clock[epochMethodName]

4 var epoch = epochMethod ()

5 setAngleBasedOnEpoch(epoch)

6 }

From what the object has claimed about its property
named now we can deduce that the property indeed repre-
sents the current time. Thus the return value from the ask

query above is the model {methodName: "now"}. It follows
that (clock[K.ask(clock, "...").methodName]) is indeed
equivalent to the JS expression (clock["now"]), or equiva-
lently (clock.now). Of course, the programming language
can provide a syntactic sugar that combines lines 2-3 to ask
the value of the queried property directly.

5.3 Dynamic Specs
You may have noticed that meaning specifications could
possibly obviate the need for having or accessing object
properties altogether. To demonstrate, consider in the code
snippet below how an alternate version of the provider of the
current time data does not say anything specifically about the
property itself, yet it inserts the current data directly into the
specifications:

1 clock = {

2 now: /* same as before... */,

3 spec: function () {

4 return ["this represents a clock",

5 "the current time in terms of seconds

since 1970, i.e., Unix epoch time, is " + this.now ()]

6 }

7 }

The expression (this.now()) in line 5 will cause the
clock object to dynamically generate a specification contain-
ing the current Unix time. The example demonstrates a case
where specifications are more tightly connected to the code,
as they are constructed from the dynamic values of expres-
sions. This contrasts with markup annotations in Semantic
Web solutions, where specifications are added later and have
no real connection to the program.

5.4 Data Adaptation
We haven’t yet tried to address the data format sensitivity
problem. The consumers are assuming that the producer of
time has provided the data in terms of Unix epoch time. But
we don’t need to make this assumption! The information
included as part of the clock object’s specifications should
be enough for our fantastical theorem prover and knowledge
base to be able to give us the current time data in the format
and units that suits us. So let’s refactor the consumer code in
Sec. 5.2 (assuming it’s for the seconds clock hand):

1 if (clock) {

2 var secs = K.ask(clock , "what time is

it in terms of seconds sec on a wall clock?").sec

3 setAngleBasedOnSec(secs)

4 }

As seen in the query on line 2, the object is directly asking
for the value in terms of seconds on the wall clock rather than

VPRI Technical Report TR-2014-003

having to deal with the epoch time. K uses its knowledge
about units of date and time to implicitly do the conversion
job from the received into the requested form.

We have now described the various tiers of our vision
for an intelligent, networked programming environment. It
would be liberating and revolutionary to have it. Certainly
we do not have a real solution fully realizing this vision
at any level. Nonetheless, in the next section we will share
some promising results we obtained from our initial inves-
tigations into utilizing an existing real-world ontology and
theorem prover towards this purpose.

6. Investigation
We have identified a real-world ontology and specification
language which has its own powerful reasoning engine. We
then developed a prototype programming language that sup-
ports the call by meaning paradigm by employing this ontol-
ogy and language for meanings.

6.1 Real-World Specification Language and Reasoner
In order to have what we wished for in the previous section,
we need a reasoner (which we called K) that not only com-
prehends real-world concepts and common sense, but it is
also equipped with a powerful and effective theorem prov-
ing engine.

Over the last decade or so powerful theorem provers
have come along. For example, SAT and Satisfiability Mod-
ulo Theories (SMT) solvers (e.g., [5]) have become a fix-
ture in program analysis and verification tools. These theo-
rem provers, however, work entirely on symbolic represen-
tations. They are powerful in making logical deductions yet
lack any baked-in common sense knowledge, such as “What
is a clock?,” “Can it tell the current time?,” etc. Therefore
these solvers require the user to symbolically describe every
piece of knowledge involved in reasoning over a particular
query. This cannot help with our goal of bringing about un-
derstanding at a universal level.

On the other hand, under the term Semantic Web tech-
nologies, we have also seen a surge of interest in real-world
ontologies and semantic markup languages to annotate soft-
ware components. For example, The W3C Web Ontology
Language (OWL) is a popular way to formally represent an
ontology of things and relations among them. Because of
the standardized format, such a knowledge base can be ex-
ploited by computer programs to facilitate a form of seman-
tic understanding and analysis. Unfortunately, many have
serious limitations. Some make semantic connections by as-
sociating a component with a term from a semantic ontology
(e.g. BuyDeltaTicket, which is a kind of BuyAirlineTicket
which is a kind of Buy), yet they provide no baked-in knowl-
edge or axioms about those concepts. In many cases they
aren’t backed up with reasoning engines with compara-
ble deductive powers, e.g., many are based on text/name
matching, or else adopt logic-based reasoning which do not

seem to scale well to again widespread applicability in prac-
tice [20].

Therefore, we chose to explore instead the use of a tool
called Cyc [25] which seems to bridge the gap between ex-
pressiveness, powerful reasoning, and having vast built-in
knowledge of the real world. Cyc—developed by Cycorp—
is a formal language and common sense ontology that incor-
porates human-level semantic understanding of concepts and
facts like “clock,” “time,” “now,” “kidneys,” “units,” “hu-
mans need air,” etc. The Cyc project started over 30 years
ago and by now it contains millions of assertions and axioms
about the universe. The tool comprises CycL—a higher-
order logic specification language—as well as a theorem
proving engine for this language. The knowledge base is eas-
ily extensible 2. Cyc can also be extended with modules that
perform common tasks required by particular domains, for
instance to efficiently convert between units of measure. The
reasoning engine automatically determines when to invoke
such modules in order to answer a query.

From our primary investigations, while not quite granting
our wish for comprehending English, Cyc shows real poten-
tial to play the role for the common sense knowledge base
and theorem prover that we wished for in the previous sec-
tion. Its end users then will not be humans, but computer
programs trying to make sense of one another.

Let us redo the above example, but this time instead of
using our imagination we will use CycL to specify the mean-
ings and invoke queries. To translate English specifications
into CycL, we follow the following conventions.

CycL variables appear as underscored names. We would
like to make assertions about an object and the meaning of
any of its properties inside specifications. Therefore, there is
implicitly a CycL variable of the same name that stands for
the actual program variable. We take advantage of the fact
that Cyc already knows about the ProgramVariable concept,
and has a binary relation
variableHasName(ProgramV ariable,CharacterString) to
associate each property with a name. We also added to
the ontology a few binary relations: Assuming the object
(this) and any of its properties (in our running example:
now) are simply ProgramVariables, we define a relation
variableHasProperty(ProgramV ariable,

ProgramV ariable) to list the properties belonging to each
object. Finally through the variableRepresents(

ProgramV ariable,Thing) relation we can assert that a vari-
able is representing something related to the real world.

6.1.1 Object and API Discovery
We will do two versions of the clock example. In the first
version, the consumers need to discover the component and
the API to access the time information but can assume the

2 Cyc is available for free to researchers and academics:
http://www.cyc.com/platform/researchcyc.

VPRI Technical Report TR-2014-003

data will be presented in the epoch form. The clock compo-
nent with its CycL annotations is shown below.

1 clock = {

2 now: /* same as before... */,

3 spec: function () {

4 return ["(variableRepresents this Clock)",
5 "(variableRepresents now
6 (SubcollectionOfWithRelationToFn
7 Integer secondsSince1970ToDate Now))"]
8 }

9 }

The programming environment implicitly asserts the
statements (isa this ProgramVariable),(isa now

ProgramVariable),(variableHasProperty this now), and
(variableHasName now "now") to save the user from stat-
ing the obvious. So in line 4 the user adds the fact that this
represents a clock, a concept known to Cyc as Clock.

The concept of the current time is represented in Cyc
by Now, but there is no existing individual concept of the
epoch time (although one can add it). There is, however,
a binary relation secondsSince1970ToDate(Integer,Date)

representing this concept. A fact secondsSince1970ToDate(
num,date) holds when date is the date that is num seconds
since the start of 1970. The statement
(SubcollectionOfWithRelationToFn Integer

secondsSince1970ToDate Now) denotes the (singleton) sub-
set of integers i such that secondsSince1970ToDate(i, Now)

holds. Thus lines 5-7 precisely state the meaning of the now

property, i.e., it represents the current time in terms of Unix
epoch time.

Time to turn to the consumers of this data. Below we have
translated the previous English specifications into CycL.
1 var clock = K.find(

2 "(and
3 (variableRepresents that thing)

4 (typeBehaviorCapable-DeviceUsed thing

5 (MeasuringFn Time-Quantity)))")
6 if (clock) {

7 var epochMethodName = K.ask(clock ,

8 "(and
9 (variableHasProperty that prop)

10 (variableRepresents prop

11 (SubcollectionOfWithRelationToFn
12 Integer secondsSince1970ToDate Now))
13 (variableHasName prop methodName)

14)".methodName
15 var epochMethod = clock[epochMethodName]

16 var epoch = epochMethod ()

17 setAngleBasedOnOnEpoch(epoch)

18 }

To discover the clock object, lines 1-5 ask the environ-
ment for an object which “represents a device that is capable
of measuring time.” (We will discuss the challenge of con-
structing a sentence in CycL later.) Note here the flexibility
brought about by the ability to incorporate semantic decision
making from within the programming language and as part
of the logic of the program: there is no reliance on the name
of the desired object, or even on the more general concept

of a clock. To discover the correct API to access the desired
data, lines 7-14 ask for the name of the property (i.e., bind-
ing for the methodName logical variable in the result of the
query), belonging to the received object, which is supposed
to represent the epoch time.

6.1.2 Data Adaptation
Now onto the second version of the consumers’ code, in
which they make no assumption in what format the time data
is received. They simply ask the system to present them the
data in the desired units. Here is the alternate version of the
specifications for the clock object:

clock = {

now: /* same as before... */,

spec: function () {

return ["(variableRepresents this Clock)",
"(secondsSince1970ToDate " +

this.now() + " Now)"
}

}

Since the evaluated specification fully conveys the value
of current time, here the customer of this data—e.g., the
seconds clock hand—can simply ask the question according
to the discovered object “What is the time now in terms
of seconds on a wall clock?” Below we show the CycL
translation of this query in line 4.

1 var clock = /* same as before... */

2 if (clock) {

3 var secs = K.ask(clock ,

4 "(SecondFn sec Now)").sec
5 setAngleBasedOnSec(secs)

6 }

The Binary functional relation SecondFn(secs,date) ex-
tracts the seconds secs from a date date. Since for the sec-
onds clock hand the seconds is the data of interest, this
function was used. Therefore, evaluating the ask call above
would invoke the following sample query on Cyc:

((variableRepresents that Clock) ∧
(secondsSince1970ToDate 1394916307 Now))

=⇒
(SecondFn sec Now)

Note that the mention of this in the specs of the provider
of data has been replaced with that, since the query is from
the point of view of the consumer. Also observe in the query
above that the term Now seems to be simply playing the role
of a logical variable. Yet this cannot be, since specifications
from the data provider (antecedent) and the consumer (con-
sequent) are independently written and may not be sharing
free variables. Rather, the logical connection is made by both
parties referring to a single shared semantic concept of Now,
which represents the current date.

The query returns a model whose binding for the sec

variable has the intended data (e.g., {sec: 7}). Thus given
the current time value in terms of epoch, the theorem prover
was able to convert the data in terms of wall clock seconds

VPRI Technical Report TR-2014-003

and hand it to the consumer here. Note that we never had
to know about or use the now property belonging to the
provided data, since the semantic specifications stored in its
spec property already conveys all the information (i.e., the
value of current time) needed by the consumer.

6.2 Implementation
To experiment, we designed and implemented a publish-
subscribe based programming language called Navā. The
language integrates Cyc to enable the call by meaning pro-
gramming model as we described in the previous sections.
Navā runs inside the browser. The language as well as a
demonstration video of the running example of this paper
are publicly available:

http://www.hesam.us/nava

Navā adds distributed programming to KScript—a func-
tional reactive programming (FRP) language on top of
JavaScript (see [22] and also [18]). Each object is in its own
separate process 3 and no state is shared between objects.
We also integrated a publish-subscribe mechanism into the
language to experiment with the automatic component dis-
covery problem. Unlike the common topic-term-based sub-
scriptions, in Navā users can state CycL queries to specify
subscriptions.

To avoid burdening the reader with learning the syntax
of a new language, we only introduce Navā’s syntax and
the implementation of our evaluation benchmark in this lan-
guage in the appendix. It suffices to say the CycL annota-
tions work just as described for the JS examples above. Fur-
thermore, the code is more readable and compact because
distribution, reactivity, and publish-subscribe are inherent
parts of the language and there is no need for the user of the
system to implement his own platform to support a dynamic
component repository and discovery.

When run on a Macbook Air laptop, our queries from the
clock microexample run fast enough to have the time data
provider publish its data every second and see the clock GUI
seconds hand reposition itself every second. This is despite
the fact that each consumer of data invokes multiple queries
that discover the data component, learn how to access the
intended data, and how to adapt the values. This indicates the
possibility that using a common sense language and reasoner
as powerful as Cyc as part of the system runtime could in fact
be practical in certain scenarios.

7. Semantic Web Service Challenge
The Semantic Web Service Challenge (SWSC) [23] has
become a de facto benchmark for investigators both in
academia and industry who aim to improve the state of art

3 Communication can be set up locally using the JavaScript WebWorkers
framework or over the network using WebSockets. See:
http://www.w3schools.com/html/html5 webworkers.asp

http://www.w3.org/TR/2011/WD-websockets-20110419

in the area of automated discovery and mediation of web
services [20]. The goal of this challenge, according to the
website, is to “develop a common understanding of various
technologies intended to facilitate the automation of medi-
ation, choreography and discovery for Web Services using
semantic annotations.”

SWSC presents three scenarios: (1) shipping discovery
scenario, (2) hardware purchasing scenario, and (3) logistic
management scenario, each involving some aspect of dis-
covery and negotiation among various services. In each sce-
nario, there is an English description of a requested service
from the client, along with the characteristics of a set of
available service providers. The challenge is to design a rep-
resentation and mediation solution that given this informa-
tion in each scenario can determine the set of services that
can indeed satisfy a request. The first year report [23] docu-
ments the result of solutions submitted by several academic
and industrial groups, each with varying degrees of success.

The goal of the SWSC closely matches that of this paper,
although the scope of its three scenarios is somewhat limited
compared to our setting. Unlike in our setting, there the
discovery and mediation is done among a small, fixed set of
similarly defined services (e.g., several shipping companies
with slightly varied sets of parameters such as shipping rates,
etc.), and with occasional anomalies in their descriptions
(e.g., rates available only on-demand).

Nevertheless, because the benchmark is widely consid-
ered the standard and still offers a realistic representation of
many challenges and subtleties for the discovery problem,
we decided to evaluate our Cyc-empowered prototype by im-
plementing the SWSC scenarios. The goal is to demonstrate
how much the task is eased and the solution made more ro-
bust by giving the developer of the software components the
ability to invoke real world, common sense reasoning within
the programming language, whether offline as a development
aid, or even online as the actual part of a program’s logic.

7.1 Methodology
It was not our goal to exactly follow the SWSC guidelines
since we are not submitting our solution to this challenge;
the actual competition was held a few years ago. Therefore,
we did not extend the capabilities of our prototype in order
to provide every aspect of the benchmark. For instance, a
request in these scenarios may include heuristic preferences
(e.g., least price), in which case the mediation service needs
to rank the matching results accordingly. The ability to dis-
criminate between multiple matches is essential. Yet Navā
doesn’t yet include support for this and we did not imple-
ment it. We also did not perform parts of the challenge deal-
ing with combining services (i.e., suggesting different ven-
dors for different products for a multiple product order). In
our setting we invoke one query per object in the reposi-
tory of available components and have not considered cases
where multiple components are asked for within a single
query. Similarly, we did not perform the task of generating a

VPRI Technical Report TR-2014-003

justification for negative matches, i.e., why a particular ser-
vice cannot satisfy a given request. While generating justi-
fications for positive and negative matches is quite useful,
at this point we have only focused on the automation of the
essential parts of the publish-subscribe system.

Below we discuss our experiment with the first two
SWSC scenarios. We skip the third scenario in favor of sav-
ing time and space; although larger in size, it is not substan-
tially different from the first scenario in terms of logical and
knowledge representation complexity.

Shipping Discovery Scenario The task in the first sce-
nario is to find suitable shipping companies that would de-
liver the client’s package, given the specified constraints
from both the customer and the service providers (e.g., des-
tination, delivery time, price).

Hardware Purchasing Scenario In the second scenario,
the product lines of several computer hardware stores are
described along with technical specifications (e.g., memory,
disk space, CPU speed, dimensions) of laptops and computer
accessories. Given a customer’s order and specification re-
quests, the mediation solution must recommend the stores
that offer a matching product.

7.2 Advantages
We include a partial listing on meaning specifications for the
providers and consumers in our benchmarks in the appendix
Secs. A.2 and A.3. For brevity, here we simply make a few
points on the experiments.

Leveraging and Building on Existing Ontology
Generally, to write specifications in a particular domain, new
knowledge (i.e., concepts and rules) has to be added to Cyc.
In our shipping scenario, for example, Cyc does not know
about the concept of “latest pick up time to be considered
for next day delivery” and its ramifications. Therefore, we
defined a new binary relation latestTimeTypeForPickUp to
express this characteristic of a shipping company and wrote
deductive rules to express its consequences. The key thing
to note, however, is that we build on an already existing vast
common sense knowledge base, and basic things need not be
explained. Let us expand on this a bit.

Related to the above sample concept and the general sce-
nario, we can leverage the existing semantic understanding
in Cyc of the concepts of “an organization,” “FedEx,” “tem-
poral statements,” “duration,” “day,” “times of day,” “hu-
man,” “act of delivery,” “geography,” “currencies,” “arith-
metic,” “units,” and many more. Here are a few examples
of leveraging existing knowledge.

- Once the relation latestTimeTypeForPickUp(

Organization, T imeOfDayType) is defined, we can
express any time of the day as the latest pickup time
for an organization, e.g., (TimeOfDayFn TimeOfDay-1PM

(MinuteOfHourFn 35)) to denote 1:35pm or TimeOfDay-
MidnightHour for midnight. We can rely on the theorem

prover’s knowledge about times of day and understand-
ing of which one of two given times comes earlier or later.

- We can leverage Cyc’s knowledge on geography. For
instance, some of the shipping companies only ship to
specific countries with different shipping rates, yet they
charge the same flat pickup fee for any delivery. We de-
fined a relation pickupFeeForOrganization(

Organization,GeopoliticalEntityOrRegion,

MonetaryV alue) to denote this fee. However, there was
no need to list out every single country served by the
company, since the pickup fee is the same. We simply as-
serted (pickupFeeForOrganization this PlanetEarth

(Dollar-UnitedStates 12.50)). Cyc can itself deduce,
since any destination country is part of PlanetEarth, that
this fee applies to any delivery.

Leveraging Knowledge of Units, Conversion and
Arithmetic Modules
We mentioned that Cyc’s theorem prover has the ability to
recognize when it can avoid search by reasoning which and
when efficient modules can be called upon, as part of its rea-
soning on a given query. For instance, it can efficiently per-
form arithmetic, string manipulations, and unit conversion
functions when necessary. Here are a couple of examples.

- It is nearly impossible for the programmer to account for
all possible discrepancies in units of data. For example, in
our shipping scenario, the company may have expressed
its maximum allowed package weight as
(Pound-UnitOfMass 50), yet the customer describes its
package having a weight of (Kilogram 30), or even a
peculiar one (Grain-UnitOfMass 70000). Nevertheless,
the theorem prover is able to infer the right conversion
functions to invoke in order to do its reasoning.

- We can easily include arithmetic statements as part of
specifications. For example, the final fee for a deliv-
ery is stated as (evaluate totalFee (PlusFn flatFee

(PlusFn deliveryFee (TimesFn mass rate)))).
Of course these values will not be bare numbers, but
rather quantities with proper units that Cyc’s calculations
will respect.

7.3 Implementation
Implementing the two scenarios in Navā required very little
programming. The bulk of the effort consisted of writing the
CycL specifications; the publish-subscribe system and the-
orem proving backend then seamlessly use these specifica-
tions to solve the tasks. In each scenario, we instantiated one
Navā object for each service and one for each request. The
service objects (i.e., the shipping companies and the com-
puter products in the two scenarios, respectively) have no
state other than the spec property holding their descriptions
in CycL. The request (customer) objects each have a single
line of code, subscribing in terms of a CycL query to services
matching their needs.

VPRI Technical Report TR-2014-003

Because Navā is a reactive system, in case a new pub-
lisher comes along or an existing one changes its advertise-
ments, its data gets (re)published and thus subscribers get
up-to-date matches.

7.4 Results
Table 1 reports the results from the two scenarios of SWSC.
The first three rows state the number of new constants, N-ary
relations, and deductive rules (or axioms) that needed to be
added to the Cyc knowledge base for each scenario, in order
to be able to fully describe the services and queries. The
fourth row (titled “avg service #sentences”) indicates the
average (among services) number of CycL sentences (i.e.,
a single fact over a relation) it takes to describe the service.

The remaining rows show for each query involved in one
of the two scenarios the size of the query itself (“query
#sentences”) and the average time it took on a Macbook Air
to run each within a Navā program (“avg query time”). We
obtained the average time for each query Q by measuring
the time it took to get an answer from the theorem prover for
the question “S =⇒ Q” for each service specification S.

In Cyc the theorem prover may be unable to arrive at an
answer in time to a given query, so timeouts can occur. Also
it generally takes longer for the theorem prover to prove a
query unsatisfiable than to produce a model for a satisfiable
query. For this reason we also report running times for each
case separately in the table.

It is not of importance here to explain the queries A1-E3.
We refer you to the challenge’s report [23] for the full details.
We simply make a point that the amount of knowledge that
was necessary to introduce to Cyc was small. It took one
of the authors roughly a day to build each scenario. The
query times are reasonable (13 seconds on average). These
indicate a promising possibility for practical applications of
this approach in various software engineering scenarios.

Note that the second part of the second scenario (C1-
C4) is about combining services, which as we noted was
outside the scope of our tool. However, for completeness,
we manually constructed CycL queries representing such
combination requests to report on the query sizes and the
performance of the prover.

Although the query times may be acceptable in many
applications, we do see cases of long wait times in the
table and a number of timeouts in the case of false queries.
However, it should be noted that we have not put any effort
in optimizing our querying strategy.

8. The Challenges Ahead
By no means do we claim to have a solution to the grand vi-
sion of the Semantic Web. In this section we enumerate some
of the many unresolved challenges that we must address.

8.1 Working with a Meanings Lingua Franca
Any knowledge base attempting to cover a sizable portion
of human common knowledge is necessarily enormous and

complex. Thus writing specifications over an ontology such
as Cyc can be an overwhelming task. Even in our little clock
example we saw the meanings we wanted to express quickly
becoming challenging to construct in CycL. To make this
simple demo, as novice users we had to spend a lot of time
exploring the ontology browser to find the CycL equivalents
of various concepts and the constructions to build whole
sentences from those concepts. Knowledge base search for
appropriate terms is a known challenge with such a large
knowledge base and it has a steep learning curve.

Nevertheless, there are two positive aspects about the Cyc
tool specifically that can help us here. First, the Cyc system
does include natural language processing capabilities, so
both service advertisements and queries can be potentially
written in a free-form natural language rather than CycL.
At this stage, however, these features are only experimental
and unavailable to the public, so we have not been able to
investigate leveraging them.

Secondly, Cyc’s powerful inference engine can be turned
back on its own ontology to search for terms. For example,
to find a function that returns a date and takes a duration at
some argument position, we can run the query:

(and (isa f EvaluatableFunction)

(argIsa f n Time -Quantity)

(resultIsa f Date))

which results in this set:

DateAfterFn, DateBeforePreciseFn, DateAfterPreciseFn,
DateBeforeFn, DateAfterDurationStartPreciseFn

Note that our vision is independent of the choice of the
lingua franca for meaning specifications. The choice of Cyc
for our investigations was simply speculative, and it is pos-
sible that alternative choices such as ConceptNet 4 will be
more appropriate in some settings.

8.2 Specifying Behavior
The focus of this work is discovery by comparing formal
specifications of advertised data and request queries. Yet this
form of discovery is not necessarily the appropriate choice
in all contexts. For instance, it might be more appropriate to
specify the desired functionality (say to sort a list of integers)
as a set of input-output pairs.

8.3 Trust, Safety, and Security
The semantic interoperability model we envisioned is too
naive. The system fully trusts the specifications claimed by
the providers, an entirely false assumption when operating
at the scale of the Internet. Mechanisms to verify the gen-
uineness of specifications and their adherence to the actual
content are essential to study. This model also fully trusts the
entire knowledge base; a single faulty rule (a piece of knowl-
edge) entered by the knowledge base editors can cause the
theorem prover to make incorrect deductions.

4 http://conceptnet5.media.mit.edu/

VPRI Technical Report TR-2014-003

Table 1. Data from implementation of SWSC scenarios I & II in Navā/Cyc on a MacBook Air 1.8 GHz Intel Core i5, 4 GB
RAM. Timeout (t/o) set at 60 sec.

I. Shipping Discovery II. Hardware Purchasing
#new concepts 3 41
#new relations 20 7
#new axioms 14 64

avg service #sentences 44 3
avg query time avg query time

query true false all query true false all
query #sentences (sec.) (sec.) (sec.) #sentences (sec.) (sec.) (sec.)

A1 11 0.3 1.1 0.5 19 0.3 4.0 3.8
A2 11 0.2 0.5 0.5 20 0.6 8.1 7.2
B1 11 0.5 0.7 0.6 20 0.7 7.2 6.2
B2 11 0.4 1.4 1.0 19 0.8 11 9.6
C1 13 20 57 (1 t/o) 35 24 1.2 – 1.2
C2 13 31 42 (2 t/o) 38 18 1.5 – 1.5
C3 13 5.4 47 (3 t/o) 38 28 1.8 – 1.8
C4 – – – – 28 1.8 – 1.8
D1 12 26 14 16 – – – –
E1 12 3.3 55 (1 t/o) 44 – – – –
E2 12 27 12 18 – – – –
E3 14 3.1 55 (3 t/o) 44 – – – –
avg 12 11 26 21 22 1.1 7.6 4.1

8.4 Deficiencies in the Knowledge Base, Failures of the
Theorem Prover, Lack of “Fail-Softness”

The fate of each query from the system is also severely
dependent on what rules are present in or absent from the
knowledge base. For instance, had the knowledge “a time-
piece is capable of telling time” or “a clock is a timepiece”
been missing from Cyc’s base KB, the discovery in the clock
example would have failed. Similarly, the case of the the-
orem prover automatically converting a date format from
Unix epoch to clock seconds would not have worked if rel-
evant date conversion knowledge wasn’t present in the KB.
More generally, the fate of every decision is put in the hands
of a very complex ontology and theorem proving machinery.
This is a major concern since we are proposing to utilize this
common sense reasoning machinery as a black-box system.

For the envisioned programming model to be robust, fur-
ther investigation is needed on how to handle the case of
theorem provers failing to provide an answer. Our simple as-
sumption of getting an undefined or false return value from
a find or ask call may not be acceptable in many situations.

Lieberman et al. make a useful distinction between sys-
tems that use common sense reasoning in a “question-
answering” form vs. “interface agents.” (see [13]). Our vi-
sion in its online form as given falls in the first category,
where the system demands and wholly depends on an an-
swer from the reasoning engine. This severe dependency on
a common sense system which is huge, complex, and un-
predictable is a very real drawback. In the second category,
the reasoner is only employed to make useful suggestions
when possible, but its contributions are not critical in any
way. This corresponds to the offline version of our vision.
The authors of [13] suggest that using a reasoner in such a
“fail-soft” manner is likely to be a more realistic usage for
common sense reasoning.

8.5 Inefficiencies of General Theorem Proving
One drawback of our experimental approach, as in other
logic-based solutions and compared with domain-specific
solutions, is inefficiency. Invoking theorem provers can be
prohibitively slow.

8.6 Discrimination in Matchmaking
The task of discrimination in matchmaking was a part of the
Semantic Web Service Challenge that we did not incorpo-
rate. In the prototype Navā, the subscriber receives all pub-
lished matches, clearly infeasible at the scale of the Internet.
A couple of mechanisms are essential to have.

First, a subscriber must be able to provide preferences
and heuristic metrics to receive only the top matches. Sec-
ond, it seems necessary to have a mechanism to bind to a
particular match and prohibit further matching. For exam-
ple, if our clock GUI objects are already receiving data from
one provider of current time, they should be able to update
their subscription to stop being bothered by other matches,
unless the current provider becomes unavailable.

8.7 Scalability of the Publish-Subscribe Model
It remains to be seen to what extent maintaining a repository
of queryable components can be scaled up to large networks,
whether examined in its offline or online conceptions. Our
experiments so far have all been limited to a small number
of local threads representing individual components.

9. Related Work
This section compares our work to previous works in pro-
gramming languages, as well as existing solutions to the vi-
sion of the Semantic Web.

9.1 Programming Languages
The offline version of our vision is similar to a component
discovery IDE feature in the Zones project [2]. Users can an-

VPRI Technical Report TR-2014-003

notate components (small Scratch [26] programs) with sim-
ple natural language annotations that describe them, as well
as search for components by providing a simple query. The
reverse direction is also featured, that is, the system can an-
alyze the code and suggest a possible annotation, by finding
programs in the repository which have similar code and have
been given annotations. However, due to being ambitious the
approach is very restricted. The annotations and queries are
limited to simple sentences, and the semantic connection be-
tween them is made by extracting terms within them and
measuring their relatedness by consulting a backend ontol-
ogy such as ConceptNet.

As far as we know, no general programming language has
been put forth which integrates common sense ontology and
reasoning as part of its dynamic execution model, for the
purposes of discovery, data compatibility, or in general. The
idea of integrating theorem provers and constraint solvers
into a programming language has been visited many times
in the past (see for example [11, 14, 27]), but such deci-
sion procedures operate entirely over abstract symbols. They
have no embedded common sense knowledge about the real-
ity, which is the central idea behind the vision of this paper.

There exists a budding programming language called the
Wolfram Language [1], which comes with built-in algo-
rithms and incorporates hooks into real-world data. E.g., one
can easily query the list of countries in Asia, call a function
to obtain the population of each country, and plot the result.
Although, Wolfram is similar to our work in embedding real-
world knowledge, we differ in fundamental ways.

First, to the best of our knowledge, Wolfram integrates
real-world data without semantic understanding of the mean-
ings. In this sense, Wolfram provides an instance of what
is sometimes referred to as information-rich programming:
when a programming language enables hooks to load real-
world data from the cloud. Another prominent example is
F#’s notion of type providers [28]. But it’s one thing to be
able to list the countries in a continent, and another thing to
have semantic understanding of a “country” as a geopolitical
concept with many ramifications. Because such semantic un-
derstanding is present in Cyc, by simply asserting a fact “C
is a country,” the system automatically infers myriad facts
about C and its relationship to other entities in the world.

Second, the Wolfram Language is an attempt to be the
everything language, where the intention is to be able to do
everything within one programming environment. However,
this is in conflict with our whole software landscape and the
context of this paper. The world of software is far from being
one ubiquitous paradigm, but rather an extremely heteroge-
neous and seemingly infinitely large set of incompatible so-
lutions. We share the vision of the Semantic Web, i.e., not to
replace all programming languages and systems with a uni-
versal thing, but rather to enable semantic understanding and
communication among arbitrary components by providing a
universal glue language for specifying meanings.

More restricted forms of the general discovery problem
have been investigated in the form of various programming
models. The goal of dependency injection [24] work is to re-
move hardcoding of dependencies and enable finding or re-
placing them dynamically. In Google’s Guice 5, one compo-
nent might say “I need an object of this type and (optionally)
with these annotations,” and the system will automatically
provide (maybe instantiate) an object that matches those re-
quirements, if there is a binding for that particular combi-
nation of types and annotations in the appropriate context.
This is an instance of the discovery problem, but types are
not expressive or modular enough [3] to work universally.

Dependency injection does not address the problem of
API discovery, which also has a rich literature. For exam-
ple, Jungloid [15] is a Java IDE tool for mining an API
repository to find a chain of calls that can take a given in-
put type to a given output type. A subsequent, dynamic tool
called CodeHint [8] searches for objects in the calling con-
text that match given boolean conditions. The conditions are
expressed in terms of Java expressions and therefore cannot
leverage common-sense knowledge, and discovery is limited
to objects present in the program’s heap.

There is also a body of related work on synthesis of com-
ponent adaptors (e.g., [4, 9]) that address a form of the data
compatibility problem. The idea here is to reason how to
connect two components with slightly mismatched APIs by
modifying the interfaces to account for the discrepancies. To
the best of our knowledge, there hasn’t been work in this line
that leverages real-world, common sense ontologies. The ap-
proaches that we have seen tend to be problem-specific and
unlikely to yet be useful in realizing the vision of automatic
data adaptation in general.

Finally, type systems have been proposed that take into
account the measurement units of numerical quantities
(e.g., [10]). This line of work is one example of the use of
real-world knowledge to specify important semantics of pro-
grams. Our vision can be thought of as a significant broad-
ening of the scope of this idea.

9.2 Semantic Web Services Solutions
Countless solutions and technologies have been proposed,
during the more than two decades since the Semantic Web
idea conception. Summarizing all of these works is infea-
sible, yet there are a number of survey papers (see [6, 20])
on the topic. To put it very briefly, these technologies use
some form of markup annotations to tie software services
to real-world concepts and ontologies, and deploy a wide
spectrum of formalisms and reasoning techniques towards
achieving the goals of the Semantic Web Services Challenge.
On a given problem in a specific domain, many of these ap-
proaches can offer a sound and effective solution.

In Sec. 3 we briefly discussed why we believe the full
potential of the Internet of software services would not be

5 https://code.google.com/p/google-guice

VPRI Technical Report TR-2014-003

realized without naturally integrating semantic capabilities
within the programming languages themselves. The primary
difference between our experimental approach and the many
previous solutions proposed towards the goals of the Seman-
tic Web and SWSC is the question of whether software com-
ponents themselves are realizing these goals, or there is a
platform sitting on top who is in charge. Every solution pre-
sented to SWSC [23] is the latter case. Each describes its
own particular platform and choices of semantic ontologies
for describing and querying software services. For example,
two of the challenge’s well performing solutions [16] de-
signed workflow models specifically for each scenario (e.g.,
“Is fee published? If yes go to next step, otherwise request a
quote,” etc.) which form part of the input to their semantic
discovery and mediation platform. Each step in the workflow
may involve invoking a software component in the domain.

It is easy to see why a programming languages (PL) ap-
proach as envisioned here would be empowering. Unlike
in other solutions, the component (object) that represents
the customer in our solution to SWSC is one and the same
as the component which performs semantic discovery. The
component can use the generality of the programming lan-
guage it is implemented in to access and make use of the
discovered component. Similarly the component providing
the service itself generates its own specifications, which can
be tightly connected to the runtime state. For example, the
statements of various fees belonging to a shipping company
can directly pull the values from the program variables rep-
resenting those fees. On the other hand, in existing SWSC
solutions the workflow is entirely out of the hands of the
services and components themselves, nor are their semantic
annotations connected with the programs in a real way.

We believe platform solutions and ontologies made by
any particular group will never see widespread adoption and
usability for the society at large. We borrow the belief from
the AI community that the only truly universal language that
has a chance of offering understanding at large is in fact
the mundane, common sense knowledge. Thus we propose
the adoption of a common sense knowledge base and rea-
soner, such as Cyc, to enable the semantic interaction among
software components. Our initial experience with the SWSC
highlighted the time and effort that can be saved by leverag-
ing existing concepts in the specification language.

To describe services, a number of existing solutions
(e.g. [17]) propose annotating services with a set of uni-
versally agreed-upon terms from a semantic ontology. We
believe this is not a scalable solution to the discovery prob-
lem. Instead, in our vision, the provider composes a series of
well-formed sentences (A) (by putting together universally
accepted semantic terms) to describe what it is offering. The
consumer writes a different series of sentences (Q) (by also
combining universally accepted semantic terms) to describe
what it wants. A and Q need not be syntactically or seman-
tically equivalent at all. The broker uses its huge common

sense knowledge (KB) to infer whether A logically, by com-
mon sense, implies Q; if it does, we have a match. This
differs from agreeing on terms. In other words, it wasn’t the
agreement on what to say that made the connection between
A and Q, but rather the agreement on the common sense
rules understood and shared by all parties.

In [21] the authors use a Resource Description Frame-
work (RDF)-based semantic language to specify compo-
nents and queries. One interesting aspect of the system is
that specifications are dynamic. The platform offers mech-
anisms to discover and execute a particular service offered
by another component. Each component is associated with
an abstract semantic model and the specification of each op-
eration states how it updates the model of the component.
However, unlike in our setting, the software component and
its semantic annotations are still entirely unrelated entities.
Furthermore, there are no indications in the article that the
platform employs preexisting common sense knowledge or
is backed by a powerful reasoning system.

10. Conclusions
In this paper we discussed the large shortcomings in today’s
programming practices to support the growing need of har-
nessing data and software components found on the Internet.
The tasks of discovery and ensuring compatibility between
components are for the most part done manually, making ex-
isting systems hard-to-manage and fragile and building new
systems a real challenge. This problem is well known and
solutions are proposed under the rubric of the Semantic Web
(SW). Many researchers, outside of the programming lan-
guages community, have proposed a multitude of solutions,
which naturally approach the problem from outside of the
languages and software themselves.

We posit that significant progress can be achieved by in-
troducing semantic reasoning at the level of the programs
and general programming languages themselves, and we
reformulate the grand visions of SW as a programming
paradigm to strive for. We shared our initial experiments
with the idea of utilizing a universal meanings glue lan-
guage, ontology, and theorem prover to facilitate semantic,
dynamic communication among components. We imple-
mented a publish-subscribe-ready programming language
called Navā that employs a common sense ontology and
reasoner called Cyc for this purpose. Using this artifact we
demonstrated one successful instance of the realization of
the dream of SW on a small microexample. We also demon-
strated how various tasks from the scenarios in the SWSC
are naturally enabled by this programming model.

It is our hope that the paper can encourage the program-
ming community to engage in SW research and be an indi-
cator that the great challenges ahead are worth undertaking.

VPRI Technical Report TR-2014-003

Acknowledgments
We thank Alan Kay for the encouragement to explore Cyc
towards programming.

A. Appendix
For the interested reader, here we unveil our language Navā
(Sec. A.1) and include partial listings of implementations of
our benchmarks in CycL, the specification language incor-
porated in Navā (Sec. A.2 and Sec. A.3).

A.1 Intro to Navā

We designed Navā as a functional reactive programming
(FRP) language, because of its well-defined notion of state
and state change. Each object consists of a set of variables
called streams in the FRP terminology. Each stream is de-
fined in terms of a functional expression over other streams
or any events. The set of current values from all streams
for each object constitute its state. Every time an external
event comes in (e.g. a timer tick or, mouse click, or in our
publish-subscribe setting receiving subscribed data from the
network) the current values of all streams (transitively) func-
tionally dependent on that event are reevaluated. On quies-
cence the state of object is said to transit to a new pseudo
time.

The charm of FRP is that state changes are well-defined
and dependencies are automatically maintained, much like
cells in a spreadsheet. In this setting, it is clear when the ob-
ject should publish its data in a publish-subscribe system:
precisely at the point of quiescence. To simplify program-
ming, every object in Navā implicitly publishes its current
stream values at that time in the form of a JSON object 6.
Thus, there is no need for explicit publishing of data as
would be necessary in the JavaScript version of the clock
example above.

Let us revisit our micro-example once more.

Publishing
The following shows the definition of the time source object
in Navā.

t = timerE (1000)

now = Math.floor(

new Date (). getTime () / 1000) on t

Because there is no explicit publishing, we use a timer
event to make the object publish its current time data on ev-
ery timer tick. The stream t will hold the timer value that
fires every 1000 ms. The stream now isn’t functionally de-
pendent on t, but it is explicitly made so using the on t di-
rective. As a result every time the timer signals, t gets a new
value and thus now gets the returned value from calling the
JavaScript expression (Math.floor(new Date().getTime()

/ 1000)) which gets the current system time in the Unix

6 We may allow the user to limit the set of streams published for optimiza-
tion or security.

epoch format. At this time the object implicitly publishes
the current values of its streams in the JSON form.

Subscribing
Navā adopts the following syntax for a subscription:

on (formalName) (dataPattern) onReceiveFnBody

So on the subscriber end of the clock example, we have
the following definition.

clock = on (that) (that.now !== undefined) {

return that }

epoch = clock.now

angle = setAngleBasedOnEpoch(epoch)

In the subscription, the expression (o.now !== undefined)

is the dataPattern as a query to state if the data matches
the subscription and onReceive simply returns the received
object so it is stored in the stream clock. Since stream epoch

is functionally dependent on clock, and in turn angle is
on epoch, every time the network forwards the clock data,
these streams will get reevaluated and thus a new angle is
computed and set for the clock hand GUIs.

Meaning Annotations
Navā programs can be annotated with CycL meaning spec-
ifications, just as we demonstrated earlier in the JavaScript
version. Below we augment the time source object with the
meanings, using the optional : "〈some spec〉" annotation.

this : "(variableRepresents this Clock)"
t = timerE (1000)

now : "(variableRepresents now
(SubcollectionOfWithRelationToFn

Integer secondsSince1970ToDate Now))"
= Math.floor(

new Date (). getTime () / 1000) on t

As before, if an object contains some meaning annotation
it will store those as the spec property within its published
JSON object. Note that when specifications include embed-
ded JavaScript expressions, they will be evaluated and re-
placed by their values before publishing of the object occurs.

A.2 SWSC Shipping Discovering Scenario
Figure 2 shows, in CycL syntax, a sample problem-specific
relation we added to the Cyc ontology related to the shipping
scenario (relations are still considered constants in CycL ter-
minology). Note that we are building on the already existing
knowledge about the concepts of ternary relations, an orga-
nization, geographic regions, and money amounts.

Figure 3 shows a sample deductive rule we added to Cyc
to be able to reason about the intended shipping queries.
Note that some of the relations are problem-specific and
added by us, while others (e.g., geographicallySubsumes)
are existing knowledge.

Figures 4 and 5 list the full descriptions of a customer de-
livery request and shipping company, respectively. In our
Navā program, when an object representing a shipping

VPRI Technical Report TR-2014-003

company with a specification like in Figure 5 comes on-
line, the environment will ask the backend theorem prover
if such a specification implies a request by a subscriber like
the one in Figure 4.

A.3 SWSC Hardware Purchasing Scenario
Figure 6 shows a sample problem-specific constant we added
to the ontology related to the hardware purchasing scenario.
Instead of making assertions about a general laptop prod-
uct to specify its various specifications, we decided to define
specific product lines in the knowledge base representing
a particular choice of options. In Figure 6, we are leverag-
ing Cyc’s understanding of computer hardware devices and
Macbook computers to define the specific product line of
“13 inch MacBooks with a 1.83GHz Intel Core Duo pro-
cessor and 512 MB DDR2 RAM and a 60 GB hard drive.”
Furthermore, we make assertions about its technical specs,
e.g., that it contains one 60 GB hard drive.

Figure 7 shows a sample problem-specific relation we
added to the ontology related to the hardware purchasing
scenario. In this case we use sellsProductTypeWithId to
be able to make a statement that certain store carries items
from a product line tagged with a specific identifier.

Figure 8 shows a sample deductive rule we added to Cyc
ontology to be able to reason about the intended product
queries. The axiom makes a general statement that “a com-
puter’s disk capacity can be calculated by the number and
the capacity of individual disk drives inside it.”

Figure 9 lists the full description of a laptop product sold
by a computer store, while Figure 10 shows a full product
request from a consumer.

constant: shippingFeeForRegion.

isa: TernaryPredicate.

arg1Isa: Organization.

arg2Isa: GeopoliticalEntityOrRegion.

arg3Isa: MonetaryValue.

comment: "(shippingFeeForRegion ORG REGION

MONEY) means that MONEY is the flat rate

that shipping company ORG adds to any other

shipping charges for region REGION.".

Figure 2. A sample relation defined in CycL for the ship-
ping scenario

(implies

(and

(shippingFeeForRegion org region deliveryFee)

(weightForShippingPurposes package mass)

(countryOfAddress address countryOfAddress)

(geographicallySubsumes region countryOfAddress)

(pickupFeeForOrganization org region flatFee)

(orgHasShippingRateForRegion org region rate)

(evaluate totalFee
(PlusFn flatFee (PlusFn deliveryFee

(TimesFn mass rate))))
(totalShippingChargeToAddress

org package address totalFee))

Figure 3. A sample deductive rule added to Cyc related to
the shipping scenario. Terms added to Cyc base KB are in
italicized green.

(actsInCapacity-MainFunction that performedBy

Shipping) // Is it capable of shipping packages?

(massOfObject package (Pound-UnitOfMass 1)) //

Package is 1 lb.

(lengthOfObject package (Inch 7)) // Package

length is 7 inches.

(widthOfObject package (Inch 6)) // Package

width is 6 inches.

(heightOfObject package (Inch 4)) // Package

height is 6 inches.

(packagePickupRequestTime package
(DateFromStringFn "2014-03-16 07:30:00")) //

Package order is placed at...

(isa address ContactLocation) // Package is

addressed to...

(fullAddressText address "105, Avenue de

la Libert. Tunis, 10002, Tunisia") // this

address...

(countryOfAddress address Tunisia) // Package

is going to Tunisia.

(cityOfAddress address CityOfTunisTunisia) //

Package is going to city of Tunis.

(canDeliverPackageTo that package address)
// Can it deliver my package to my recepient

address?

(deliveryWithinDurationAvailable that package
(DaysDuration 3)) // Can it deliver it within 3

days?

(thereExists charge (and

(totalShippingChargeToAddress that package
address charge)

(greaterThan (Dollar-UnitedStates 50) charge)))
// Will it charge less than $50 for this package?

Figure 4. Full description of a customer delivery request

VPRI Technical Report TR-2014-003

(variableRepresents this ShippingOrganization) // This is a shipping organization.

(orderToPickupMinimum this (HoursDuration 2)) // Order must be given minimum 2 hrs before pickup.

(deadlineForNextDayDelivery this TimeOfDay-6PM) // Order must be picked up before 6pm for next day delivery.

(latestTimeTypeForPickUp this TimeOfDay-8PM) // Latest time pickup can occur is 8pm.

(pickupFeeForOrganization this PlanetEarth (Dollar-UnitedStates 12.50)) // Pickup fee is $12.50.

(orgHasShippingRateForRegion this ContinentOfEurope (DollarsPerPound 6.75)) // $6.75/lb fee for Europe.

(shippingFeeForRegion this ContinentOfEurope (Dollar-UnitedStates 53.5)) // $53.5 flat fee for Europe.

(orgHasShippingRateForRegion this ContinentOfAsia (DollarsPerPound 7.15)) // $7.15/lb fee for Asia.

(shippingFeeForRegion this ContinentOfAsia (Dollar-UnitedStates 60)) // $60 flat fee for Asia.

(orgHasShippingRateForRegion this ContinentOfAfrica (DollarsPerPound 10.15)) // $10.15/lb fee for Africa.

(shippingFeeForRegion this ContinentOfAfrica (Dollar-UnitedStates 75)) // $75 flat fee for Africa.

(orgHasShippingRateForRegion this ContinentOfAustralia (DollarsPerPound 7.15)) // $7.16/lb fee for Oceania.

(shippingFeeForRegion this ContinentOfAustralia (Dollar-UnitedStates 60)) // $60 flat fee for Oceania.

(orgHasShippingRateForRegion this ContinentOfNorthAmerica (DollarsPerPound 4)) // $4/lb fee for North America.

(shippingFeeForRegion this ContinentOfNorthAmerica (Dollar-UnitedStates 40)) // $40 flat fee for North America.

(orgHasShippingRateForRegion this ContinentOfSouthAmerica (DollarsPerPound 4)) // $4/lb fee for South America.

(shippingFeeForRegion this ContinentOfSouthAmerica (Dollar-UnitedStates 40)) // $40 flat fee for South America.

(orgDeliversToRegion this ContinentOfAfrica) // We deliver to Africa.

(orgDeliversToRegion this ContinentOfNorthAmerica) // We deliver to North America.

(orgDeliversToRegion this ContinentOfSouthAmerica) // We deliver to South America.

(orgDeliversToRegion this ContinentOfEurope) // We deliver to Europe.

(orgDeliversToRegion this ContinentOfAsia) // We deliver to Asia.

(orgDeliversToRegion this ContinentOfAustralia) // We deliver to Australia.

(maxWeightForShippingPurposes this (Pound-UnitOfMass 50)) // Packages must be less that 50lb.

(deadlineForDeliveryWithin this (DaysDuration 3) TimeOfDay-5PM) // Can deliver within 3 days if ordered by 5pm.

Figure 5. Full description of a shipping company

constant: MacBook -13 InchScreen -1830 MHzIntelCoreDuo -512 MBDDR2 -HDD60GB -White.

isa: FirstOrderCollection

isa: ComputerHardwareDeviceType.

genls: MacBook -13 InchScreen.

comment: "The collection of 13 inch MacBooks with a 1.83 GHz Intel Core Duo processor ,

512 MB DDR2 RAM and a 60 GB hard drive.".

productTypeHasComponent: ComputerMemoryCard -DDR2 -SO-DIMM -512MB.

productTypeHasComponent: IntelCoreDuo -1830MHz -ComputerProcessor.

productTypeHasComponent: Computer -HardDrive -60GB.

Figure 6. A sample constant defined in CycL for the hardware purchasing scenario

constant: sellsProductTypeWithId.

isa: TernaryPredicate.

arg1Isa: IntelligentAgent.

arg2Isa: FirstOrderCollection.

arg3Isa: CharacterString.

arg2Genl: TemporallyExistingThing.

comment: "(sellsProductTypeWithId VENDOR, PROD, STRING ID) means vendor VENDOR sells product PROD with a

product id (as a string name) of STRING ID.".

Figure 7. A sample relation defined in CycL for the hardware purchasing scenario

VPRI Technical Report TR-2014-003

(implies

(and

(genls product Computer -Generic)

(numberOfSpecifiedComponentTypeInSystemType product device count)

(genls device HardDiskDrive)

(relationAllInstance diskCapacity device capacity)

(evaluate total (TimesFn capacity count)))

(computerTypeHasLocalHDStorage product total))

Figure 8. A sample deductive rule added to Cyc related to the hardware purchasing scenario. Terms added to Cyc base KB are
in italicized green.

(variableRepresents this BestBuyStore) // This is a BestBuy store.

(sellsProductTypeWithId this MacBook-13InchScreen-1830MHzIntelCoreDuo-512MBDDR2-

HDD60GB-White "00000001") // We sell white, 13 inch Macbooks with 1.83GHz CoreDuo CPU, 512MB RAM, 60 GB

hard disk with a product id of ‘‘00000001’’.

(sellsProductTypeWithIdAtPrice this "00000001" (Dollar-UnitedStates 1099.00)) // ...the price is $1099.00.

Figure 9. Full description of a hardware store’s laptop product

(isa that (ProductProviderFn-Seller ComputerHardwareMarketCategory)) // Does it sell computer stuff?

(sellsProductTypeWithId that product productId) // ...and sell a product...

(sellsProductTypeWithIdAtPrice that productId price) // ...at certain price...

(productTypeHasComponent product proc) // ...which has a processor component...

(genls proc IntelCoreDuoProcessor) // ...that is an Intel CoreDuo...

(computerTypeHasProcessorSpeed product speed) // ...which has the speed...

(greaterThanOrEqualTo speed (GigaHertz 2)) // ...of at least 2 GHz...

(genls product WhiteColor) // ...which is white...

(productTypeHasComponent product memory) // ...and which has another component...

(genls memory ComputerMemoryBoard) // ...which is a RAM...

(storageCapacity memory ram) // ...which has an amount...

(greaterThanOrEqualTo ram (Gigabyte 1)) // ...which is more than 1GB...

(computerTypeHasLocalHDStorage product storage) // ...which has storage...

(greaterThanOrEqualTo storage (Gigabyte 100)) // ...of at least 100 GB...

(deviceTypeHasScreenSize product screen) // ...which has a screen size...

(numericallyEquals screen (Inch 13)) // ...of 13 inch...

(genls product MacBook-Computer) // ...and it is a MacBook...

(lessThanOrEqualTo price (Dollar-UnitedStates 1500)) // ...which costs at most $1500.

Figure 10. Full description of a customer product request

VPRI Technical Report TR-2014-003

References
[1] The Wolfram Language. https://www.wolfram.com/language.

[2] K. C. Arnold and H. Lieberman. Managing ambiguity in
programming by finding unambiguous examples. In OOPSLA
’10.

[3] G. Bracha. Types are anti-modular.
http://gbracha.blogspot

.com/2011/06/types-are-anti-modular.html.

[4] C. Canal, P. Poizat, and G. Salaün. Model-based adaptation
of behavioral mismatching components. IEEE Trans. Softw.
Eng., 2008.

[5] L. De Moura and N. Bjørner. Z3: an efficient SMT solver. In
TACAS’08/ETAPS’08.

[6] H. Dong, F. K. Hussain, and E. Chang. Semantic web service
matchmakers: state of the art andchallenges. Concurrency and
Computation: Practice and Experience, 25(7):961–988, 2013.
ISSN 1532-0634.

[7] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermar-
rec. The many faces of publish/subscribe. 2003.

[8] J. Galenson, P. Reames, R. Bodik, B. Hartmann, and K. Sen.
CodeHint: Dynamic and interactive synthesis of code snip-
pets. In ICSE ’14.

[9] P. Inverardi and M. Tivoli. Automatic synthesis of modular
connectors via composition of protocol mediation patterns. In
ICSE ’13.

[10] A. Kennedy. Types for units-of-measure: Theory and practice.
In CEFP’09.

[11] A. S. Köksal, V. Kuncak, and P. Suter. Constraints as control.
In POPL ’12.

[12] D. B. Lenat. Cyc: A large-scale investment in knowledge
infrastructure. Commun. ACM, 38(11):33–38, Nov. 1995.
ISSN 0001-0782.

[13] H. Lieberman, H. Liu, P. Singh, and B. Barry. Beating com-
mon sense into interactive applications. AI Magazine, 25:63–
76, 2004.

[14] G. Lopez, B. Freeman-Benson, and A. Borning. Implement-
ing constraint imperative programming languages: the kalei-
doscope’93 virtual machine. In OOPSLA ’94.

[15] D. Mandelin, L. Xu, R. Bodı́k, and D. Kimelman. Jungloid
mining: Helping to navigate the api jungle. In PLDI ’05.

[16] T. Margaria, C. Winkler, C. Kubczak, B. Steffen, M. Bram-
billa, S. Ceri, D. Cerizza, E. D. Valle, F. M. Facca, and
C. Tziviskou. The sws mediator with webml/webratio and
jabc/jeti: A comparison. In ICEIS ’07.

[17] S. A. McIlraith, T. C. Son, and H. Zeng. Semantic web
services. IEEE Intelligent Systems, 16(2), Mar. 2001.

[18] L. A. Meyerovich, A. Guha, J. Baskin, G. H. Cooper,
M. Greenberg, and S. Krishnamurthi. Flapjax: a programming
language for Ajax applications. In OOPSLA ’09.

[19] M. Minsky. Commonsense-based interfaces. Commun. ACM,
43(8):66–73, Aug. 2000. ISSN 0001-0782.

[20] L. D. Ngan and R. Kanagasabai. Semantic Web service
discovery: State-of-the-art and research challenges. Personal
Ubiqu. Comput., 2013.

[21] S. Nikitin, A. Katasonov, and V. Y. Terziyan. Ontonuts:
Reusable semantic components for multi-agent systems.
ICAS ’09, 2009.

[22] Y. Ohshima, A. Lunzer, B. Freudenberg, and T. Kaehler.
KScript and KSWorld: A time-aware and mostly declarative
language and interactive GUI framework. In Onward! ’13.

[23] C. Petrie, T. Margaria, H. Lausen, and M. Zaremba. Semantic
Web Services Challenge: Results from the First Year. 2008.

[24] D. R. Prasanna. Dependency Injection. Manning Publications
Co., 1st edition, 2009.

[25] D. Ramachandran, P. Reagan, and K. Goolsbey. First-
orderized ResearchCyc: Expressivity and efficiency in a
common-sense ontology. In Papers from the AAAI Workshop
on Contexts and Ontologies, 2005.

[26] M. Resnick, Y. Kafai, J. Maloney, N. Rusk, L. Burd, and
B. Silverman. A networked, media-rich programming envi-
ronment to enhance technological fluency at after-school cen-
ters in economically-disadvantaged communities. Technical
report, 2003.

[27] H. Samimi, E. D. Aung, and T. Millstein. Falling back on
executable specifications. In ECOOP ’10.

[28] D. Syme, K. Battocchi, K. Takeda, D. Malayeri, and T. Pet-
ricek. Themes in information-rich functional programming
for internet-scale data sources. In DDFP ’13.

VPRI Technical Report TR-2014-003

