
Viewpoints Research Institute, 1209 Grand Central Avenue, Glendale, CA 91201 t: (818) 332-3001 f: (818) 244-9761

 Open, extensible composition models

 Ian Piumarta

VPRI Technical Report TR-2011-002

squeak
Typewritten Text
This material is based upon work supported in partby the National Science Foundation underGrant No. 0639876. Any opinions, findings, andconclusions or recommendations expressed in thismaterial are those of the author(s) and do notnecessarily reflect the views of the NationalScience Foundation.

squeak
Typewritten Text
For the workshop on Free Composition at ECOOP 2011. The proceedingswere published by the ACM digital library.

squeak
Typewritten Text

Open, extensible composition models
(extended abstract)

∗

Ian Piumarta
Academic Center for Computing and Media Studies, Kyoto University, Japan

Viewpoints Research Institute, Glendale, CA, USA

ian@vpri.org

ABSTRACT
Simple functional languages like LISP are useful for explor-
ing novel semantics and composition mechanisms. That use-
fulness can be limited by the assumptions built into the
evaluator about the structure of data and the meaning of
expressions. These assumptions create difficulties when a
program introduces a composition mechanism that differs
substantially from the built-in mechanism of function ap-
plication. We explore how an evaluator can be constructed
to eliminate most built-in assumptions about meaning, and
show how new composition mechanisms can be introduced
easily and seamlessly into the language it evaluates.

1. INTRODUCTION
Adding a new composition mechanism to a programming
language can entail defining a corresponding data type T ,
creating and maintaining values of that type, adding a syn-
tactic operator to combine those values with one or more
other values, and providing an algorithm that determines
the compositional meaning of those combinations. Values
of T retain persistent information needed by the composi-
tion. These values can also act as syntactic operators, if the
intrinsic evaluation mechanism associates their presence in
a combination with behaviour specific to T . The algorithm
provides semantics for the composition, expressed as further
compositions or as primitive operations of the language, ac-
cording to the values being combined.

The above can be achieved within the basic abstractions
of some programming languages, although unnecessary com-
plexity and obfuscation arise whenever those abstractions
limit direct access to the data and algorithms implementing
the composition. If supporting mechanisms can be intro-
duced at the meta level of the host language then these lim-
itations do not arise, the interface presented to the program-
mer can deal directly and efficiently with relevant informa-
tion, and the new composition appears as a natural exten-
sion of the language—qualitatively indistinguishable from
an intrinsic mechanism.

∗The full paper [4] is available online.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FREECO’11, July 26, 2011, Lancaster, UK
Copyright 2011 ACM 978-1-4503-0892-2/11/07 ... $10.00

The introduction of supporting mechanisms at the meta
level will be illustrated using a functional language derived
from McCarthy’s LISP [1, 2]. Section 2 introduces this lan-
guage and its evaluator. Section 3 describes modifications
in its meta level to accommodate user-defined compositions.
Section 4 presents several examples of composition mecha-
nisms added to the language. Section 5 discusses the work
and places it in context. Section 6 offers concluding remarks.

1.1 Typographic conventions
URLs and code are set monospaced. In code the name of a
<type> identifier is enclosed by angle brackets and access to
the fields of its values is designated <type>-field. (<, >, %
and - are letters having no special significance.) Primitive
behaviour is written as {pseudo code} .

2. A MINIMAL FUNCTIONAL LANGUAGE
Figure 1 defines an evaluator for a functional language of
symbolic expressions represented as lists in polish notation.
The evaluator corrects several semantic inadequacies of LISP
(described by Stoyan [5]) and is metacircular (written in the
language it evaluates). The language provides:

• lists and atomic values, including symbols

• primitive functions called <subr>s

• symbolic functions (closures) called <expr>s

• a <fixed> object that encapsulates another applicable
value and prevents argument evaluation

• predicates to discriminate between the above types

• built-in <subr>s to access the contents of these values

• a way to call the primitive behaviour of a <subr>

• a quotation mechanism to prevent evaluation of literals

The interpretation of structures is defined by the usual
pair of functions eval and apply. eval takes an expression
(simple or complex) and yields its value in the context of
an environment of bound names. apply takes a complex
expression, split into a function part and its arguments,
and yields the result of applying the former to the latter
in the context of an environment of bound names. (As in
LISP [2]: evlis evaluates each element in a list and returns
a list of the results, pairlis extends an environment by
binding a list of names to a list of values, and assoc finds a
previously-bound name in an environment.)

A global initial environment contains bindings for prim-
itives (<subr> values) and control structures (<subr>s or
<expr>s wrapped in a <fixed>). Assignment and mutable
state are supported via primitives (as they were in LISP [2,
pp. 70ff]).

VPRI Technical Report TR-2011-002

(define eval (lambda (exp env)
(cond
((symbol? exp) (cdr (assoc exp env)))
((atom? exp) exp)
(’t (let ((fn (eval (car exp) env)))

(if (fixed? fn)
(apply (<fixed>-function fn) (cdr exp) env)
(apply fn (evlis (cdr exp) env) env)))))))

(define apply (lambda (fun args env)
(cond

((subr? fun) {call (<subr>-implementation fun) args env})
((expr? fun) (eval (<expr>-body fun) (pairlis (<expr>-formals fun) args (<expr>-environment fun)))))))

Figure 1: Evaluation of symbolic expressions in a minimal functional language

(define %type-names (tuple))
(define %type-sizes (tuple))
(define %type-fields (tuple))

(define %allocate-type
(let ((last-type number-of-builtin-types))
(lambda (name fields)
(let ((type (set last-type (+ 1 last-type))))
(set-tuple-at %type-names type name)
(set-tuple-at %type-sizes type (list-length fields))
(set-tuple-at %type-fields type fields)
type))))

(define <point> (%allocate-type ’<point> ’(x y)))

(define <point>-x (lambda (value)
(and (= <point> (type-of value))

(tuple-at value 0))))

Figure 2: Adding an aggregate type to the language

<expr>s are closures carrying the environment in which
they were defined. Variable lookup is lexically scoped. (A
trivial change to the last line in Figure 1 gives LISP’s dy-
namic scoping.) Additional atomic types such as numbers,
and primitives that act on them, will be present in a practi-
cal language of this kind. They are omitted here for brevity.

3. SUPPORTING OPEN COMPOSITION
The language just described supports one combining form
(the list). When a list is evaluated it causes a composi-
tion in which each of the element(s) being combined is re-
cursively evaluated yielding one or more values, the first of
which is then applied (as a function) to the rest (the argu-
ments). “Open composition” means the ability to add new
compositions (or replace existing ones) corresponding to the
evaluation of new (or existing) combining forms.

Modifications to the language will be made to support:

• defining new types, to represent the syntactic operators,
state and semantics of composition mechanisms, and

• associating meaning with combinations involving these
new types.

3.1 Extensible aggregate types
Predicates in eval and apply use some property of a value to
discriminate between types. The simplest generalisation is
to identify each type with a unique integer. Incrementing a
counter suffices to allocate a new type. A primitive function
type-of yields the type identifier for a given value.

Three types (<expr>, <fixed> and <pair>s for construct-
ing lists) appear in the evaluator that are aggregates of val-
ues. Aggregation can be generalised to a single mechanism:
infinitely-sized, indexable N -tuples containing undefined at
all uninitialised indices.1

1Assignment at an uninitialised index extends the tuple as
necessary.

With these mechanisms addition of a new aggregate type
can be effected in user code, as shown in Figure 2.2 No
restrictions have been placed on the structure or semantics
of objects. Intrinsic types (those used by the evaluator)
are built from the same parts: there is no disparity between
built-in and user-defined types and values.

3.2 Extensible composition rules
Two kinds of composition occur in the evaluator. Simple
atomic expressions (symbols in particular) are composed
with the environment by eval to yield a value. Combi-
nations of one or more values in complex expressions are
composed by apply by application of a primitive or closure
value to the remaining values. Both of kinds of composition
are made extensible by applying an appropriate combination
mechanism to every expression according to its type. Two
tuples, evaluators and applicators, are indexed by type in
eval and apply, respectively.

eval(x, e) = apply(evaluators[type(x)], cons(x,nil), e)

apply(f, a, e) = apply(applicators[type(f)], cons(f, a), e)

Four consequences of this decomposition are:

• any applicable value can supply the composition seman-
tics for any expression, simple or complex,

• any value can be made applicable, with semantics de-
termined by its type and its value,

• the meaning of a complex expression (explicit combi-
nation of values, e.g., as a list) is not fixed, or even
supplied, by the evaluation mechanism, and

2The steps shown allocate the type, record information for
printing and instantiating, and define an accessor for an in-
stance field. In practice these steps are generated automat-
ically from a single define-type expression, given a type
name and a list of field names, along with the implied set of
<type>-field accessors.

VPRI Technical Report TR-2011-002

(define eval (lambda (exp env)
(apply (tuple-at evaluators (type-of exp)) (list exp env) env)))

(define apply (lambda (fn args env)
(if (subr? fn)

{call (<subr>-implementation fn) args env}
(apply (tuple-at applicators (type-of fn)) (list fn args env) env))))

Figure 3: Generalised assignment of meaning to expressions

(set-tuple-at evaluators <symbol> (lambda (exp env) (cdr (assoc exp env))))

(set-tuple-at evaluators <number> (lambda (exp env) exp))

(set-tuple-at evaluators <pair> (lambda (exp env)
(let ((fn (eval (car exp) env)))
(if (eq (type-of fn) <fixed>)
(apply (<fixed>-function fn) (cdr exp) env)
(apply fn (evlis (cdr exp) env) env)))))

(set-tuple-at applicators <expr> (lambda (fn args env)
(eval (<expr>-body fn) (pairlis (<expr>-formals fn) args (<expr>-environment fn)))))

Figure 4: The original language semantics expressed as composition rules

(define-type <form> (function))

(define form (lambda (function)
(let ((self (new <form>)))

(set (<form>-function self) function)
self))

(set-tuple-at *applicators* <form> (lambda (fn args env)
(eval (apply (<form>-function fn) args env) env)))

Figure 5: Form type for defining macros

• apply is an infinitely-recursive function.

Infinite recursion is avoided by short-circuiting the seman-
tics of applying a primitive, as shown in Figure 3. Four en-
tries in the evaluators and applicators tuples, as shown in
Figure 4, restore the original semantics to the language.

Associating evaluators and applicators with env (effec-
tively binding them in the environment) permits great flexi-
bility in assigning meaning to program constructs, including
incremental extension or modification of existing composi-
tion mechanisms, and multiple context-sensitive semantics
for any given type. (The latter is pivotal when modelling
language implementation as a series of partial evaluations,
which is the motivation for an “open composition model”.)

4. DEFINING NEW COMPOSITIONS
Three new compositions will be added to the language: a
<form> value (for defining macros), object-oriented message
passing and generic functions. (We assume a quasiquotation
mechanism, which is straightforward given <form>.)

4.1 Forms and macros
Figure 5 introduces an applicable <form> type, encapsulat-
ing some other applicable value. The encapsulated value is
applied to the arguments and then the result is re-evaluated.
Placing a <form> inside a <fixed> creates a macro.

4.2 Message passing
Message passing sends a message with zero or more argu-
ments to an object that executes a corresponding method.
The method is typically chosen by combining the type of the
object with the name (selector) of the message:

type × selector → method

Objects scan store (usually in their type) a table of methods
indexed by selector, or selectors can store a table of methods

indexed by type.3 The implementation in Figure 6 chooses
the latter.4

4.3 Generic functions
A generic function contains several function implementa-
tions. When applied, the generic function uses some prop-
erty of each of its arguments to choose which implementation
will be executed. The type of each argument is often used.5

Figure 7 shows a simple model of generic functions.6 Tu-
ples are organised as a sparse multi-dimensional array. Suc-
cessive dimensions correspond to successive argument posi-
tions. For each dimension the tuple maps a type id to the
tuple for the next argument position, until the final tuple
which maps type to the implementation function.

5. DISCUSSION
The preceding compositions can be modelled in the language
of Section 2 by a closure implementing dispatch through a
closed-over list-based structure containing the required map.
Accessing (for inspection or manipulation) the structure is
one source of the “complexity and obfuscation” mentioned
in the introduction, demanding knowledge of the internal
structure and implementation of closures and environments.

3Each has advantages compared with the other. Both would
be present in a comprehensive model of message passing.
4This breaks encapsulation, a precept of object-orientation.
Order can be restored by storing an association list with
each type to map selector names to methods. Then <selec-
tor> looks up the method and memoises it, in the structure
shown here, before invoking it. Lookup need not be efficient
because of the memoisation. Chaining <selector>s together
permits enumeration to flush memoised results whenever
method dictionaries are manipulated. Such an implemen-
tation of <selector> is one line longer than that shown.
5The simplest property to use is equality with a constant
but the resulting behaviour is of limited use.
6This model uses equality to compare the list of actual ar-
gument types and the type signature associated with each
implementation. If an ordering relation can be defined for
types then more interesting comparisons can be used, to
find the ‘closest admissible’ implementation when actual ar-
gument types do not precisely match an implementation
function signature. As with selectors, the comparison need
not be efficient because the result can be memoised in the
<generic>’s array.

VPRI Technical Report TR-2011-002

(define-type <selector> (name methods))

(define make-selector (lambda (name)
(let ((self (new <selector>)))
(set (<selector>-name self) name)
(set (<selector>-methods self) (tuple))
self)))

(define define-selector (fixed (form (lambda (name)
‘(define ,name (make-selector ’,name))))))

(define %add-method (lambda (self type method)
(set-tuple-at (<selector>-methods self) type method)))

(define define-method (fixed (form (lambda (selector type args . body)
‘(%add-method ,selector ,type (lambda (self ,@args) ,@body))))))

(set-tuple-at *applicators* <selector> (lambda (self . arguments)
(apply (or (tuple-at (<selector>-methods self) (type-of (car arguments)))

(error "no method in "(<selector>-name self)" for "(type-of (car arguments))))
arguments)))

Figure 6: Selector type and its applicative meaning function

(define-type <generic> (name methods))

(define generic (lambda (name)
(let ((self (new <generic>)))

(set (<generic>-name self) name)
(set (<generic>-methods self) (tuple))
self)))

(define define-generic (fixed (form (lambda name) ‘(define ,name (generic ’,name)))))

(define %add-multimethod (lambda (mm types method)
(if types

(let ((methods (or (<generic>-methods mm) (set (<generic>-methods mm) (tuple)))))
(while (cdr types)

(let ((type (eval (car types))))
(set methods (or (tuple-at methods type) (set-tuple-at methods type (tuple)))))

(set types (cdr types)))
(set-tuple-at methods (eval (car types)) method))

(set (<generic>-methods mm) method))))

(define define-multimethod (fixed (form (lambda (method typed-args . body)
(let ((args (map cadr typed-args))

(types (map car typed-args)))
‘(%add-multimethod ,method (list ,@types) (lambda ,args ,@body)))))))

(set-tuple-at *applicators* <generic> (lambda (self . arguments)
(let ((method (<generic>-methods self))

(arg arguments))
(while arg
(set method (tuple-at method (type-of (car arg))))
(set arg (cdr arg)))

(apply method arguments))))

Figure 7: Generic function type and its applicative meaning function

5.1 Metacircularity and extensibility
A metacircular evaluator is self-extensible through direct
manipulation of its own implementation. Eventually it must
be grounded in an executable representation, terminating
the recursion in its implementation. Typically this means
translating all or part of the evaluator into another lan-
guage. The translated parts of the evaluator become inac-
cessible to direct manipulation.7 Minimising the number of,
and semantic assumptions made by, these translated parts
is therefore desirable.

Grounding the original evaluator of Figure 1 fixes:

• the types permissible in simple expressions (implicit
combination of atom and environment),

• the meaning of simple expressions,

• the types in which complex expressions (explicit combi-
nations of values) can be represented,

7In the absence of a dynamic translator from expressions to
the executable representation.

• the composition rule associated with complex expres-
sions of each permissible type,

• the types that can appear as operators in complex ex-
pressions, and

• the semantics associated with an operator in a complex
expression.

Grounding the generalised evaluator of Figure 3 fixes only
the mechanism associating meaning with the type of an ex-
pression and the semantics of applying a primitive <subr>.

Additional grounded mechanisms (Figure 4) are needed
to supply meaning for:

• atomic values (identifiers and literals),

• a composition rule for combination of explicit combina-
tion of values via a list of <pair>s, and

• the semantics of applying a closure <expr>.

Modifications to these last three mechanisms can be made
by programs, with care. With almost no restrictions: new
types can be given meaning as simple expressions, new types

VPRI Technical Report TR-2011-002

defined to combine values into complex expressions, specific
meanings assigned to those combinations, new applicable
types defined to serve as composition operators, and new
semantics associated with those compositions.

5.2 Compositionality
In compositional languages, the meaning of a complex ex-
pression is determined from the meanings of its lexical com-
ponents and the syntactic operator used to combine them [6].
In computer languages, which are usually compositional, the
lexical components are expressions and the syntactic opera-
tor is the punctuation (or reserved word) that combines sev-
eral expressions into a complex expression.8 The meaning
of an expression is its value or effect. The syntactic operator
determines a rule of composition for the lexical components.

This can be written as a homomorphism between syntax
and semantics [3]:

m(F (e1, . . . , ek)) = G(m(e1), . . . ,m(ek))

Our minimal language has no syntax, so the type of the
first expression in a combination acts as the syntactic opera-
tor F .9 The semantic function G associated with F , and the
values (meanings) of the sub-expressions, m(ei), determine
the value (meaning) of the overall composition. So:

• lists (of <pair>s) create a combination of sub-expressions
(they are not syntax),

• compositional syntax is associated with the type of the
value of the first sub-expression in a combination,

• each compositional syntax has exactly one compositional
semantics associated with it, and

• the compositional semantics is parameterised by the
combined sub-expressions, including the value that de-
termined the compositional syntax.

The morphology of the above rule is imposed by the func-
tion stored at evaluators[<pair>] (Figure 4) which defines
the meaning of complex expressions combined as a list of
<pair>s. Rules leading to forms of composition very differ-
ent to that above can be expressed easily as new aggregate
types (to combine sub-expressions) with associated meaning
functions (imposing compositional forms) in evaluators.

5.3 Implementation
The language used in the examples, implementing the ex-
tensible types and composition rules described here, can be
downloaded from: http://piumarta.com/software/maru

The language hosts a small compiler that translates a
metacircular definition of its evaluator from S-expressions
to IA32 machine code. Several composition mechanisms are
defined and used in the compiler for brevity, clarity and sim-
plicity in its implementation.

8Punctuation and reserved words may also be associated
with declarations. These are not syntactic operators, but
may nonetheless create or modify the environment in which
compositions are subsequently performed. Some languages
may also have a meta language, with its own set of syntac-
tic operators, that determine the meanings of meta expres-
sions involving declarations or types. Such meta languages
are usually compositional and therefore subject to the same
considerations presented here for the evaluation of “normal”
expressions.
9So set and + are different syntactic operators, but + and -
are the same.

5.4 Performance
The translation of S-expressions to IA32 machine code in
the above metacircular implementation provides a conve-
nient benchmark for measuring the cost of extensibility. The
compiler was run twice, once using the original evaluator of
Section 2 and again using the extensible evaluator described
in Section 3. Translation took 30% longer when the compiler
was run using the extensible evaluator.

6. CONCLUSIONS
A simple, metacircular, symbolic, functional language was
restructured to remove assumptions about types and com-
position mechanisms. The original behaviour was restored
by indirectly associating evaluation rules with three types
and applicable behaviour with a fourth type. New compo-
sition rules can be defined in the resulting language, with
no privileged status accorded to the built-in types. Addi-
tional indirections in the evaluator caused a 30% loss in per-
formance. (Techniques beyond the scope of this paper, in-
volving staged evaluation of expressions and their associated
compositions, can more than recover this loss. Supporting
such techniques flexibly was the reason for developing and
refining the open composition mechanism described here.)

The restructuring follows general principles that could be
adapted for any small language in which code can be manip-
ulated under program control. The language presented here
is very simple, approaching the simplest in which the restruc-
turing for extensible composition is possible, but provides a
compelling demonstration of the expressive power gained.
Its metacircular evaluator, runtime library, and compiler
generating IA32 machine code are expressed in less than
1800 distinct lines of code.

7. REFERENCES

[1] J. McCarthy (1960) Recursive Functions of Symbolic
Expressions and Their Computation by Machine,
CACM, Vol. 3, No. 3, pp. 184–195

[2] J. McCarthy et al (1961) LISP 1.5 Programmer’s
Manual, MIT AI Project, Cambridge, MA

[3] R. Montague (1970) Universal grammar, Theoria,
Vol. 36, Issue 3, pp. 373–398

[4] I. Piumarta (2011) Open, extensible composition models,
http://piumarta.com/papers/freeco11

[5] H. Stoyan (1991) The Influence of the Designer on the
Design—J. McCarthy and Lisp, in V. Lifschitz (Ed.),
Artificial Intelligence and Mathematical Theory of
Computation: Papers in Honor of John McCarthy,
Academic Press Professional, Inc.

[6] Z. G. Szabó (2008) Compositionality, in E. Zalta (Ed.),
The Stanford Encyclopedia of Philosophy

Acknowledgements
The author is greatly indebted to Kita Laboratory, Ky-
oto University, for supporting this work. Mark Rafter and
Yoshiki Ohshima provided invaluable comments on an early
draft of this paper. The anonymous reviewers made many
excellent suggestions of which, unfortunately, only half could
be given proper consideration in the space available for this
version of the paper.

VPRI Technical Report TR-2011-002

