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Abstract. The state of an imperative program—e.g., the values stored in global
and local variables, arrays, and objects’ instance variables—changes as its state-
ments are executed. These changes, or side effects, are visible globally: when one
part of the program modifies an object, every other part that holds a reference to
the same object (either directly or indirectly) is also affected. This paper intro-
duces worlds, a language construct that reifies the notion of program state and
enables programmers to control the scope of side effects. We investigate this idea
by extending both JavaScript and Squeak Smalltalk with support for worlds, pro-
vide examples of some of the interesting idioms this construct makes possible,
and formalize the semantics of property/field lookup in the presence of worlds.
We also describe an efficient implementation strategy (used in our Squeak-based
prototype), and illustrate the practical benefits of worlds with two case studies.

1 Introduction

Solutions to many problems in computing start with incomplete information and must
gather more while the solution is in progress. An important class of problems have to
perform speculations and experiments, often in parallel, to discover how to proceed.
These include classical non-deterministic problems such as certain kinds of parsing,
search and reasoning, dealing with potential and actual error conditions, doing, undoing,
and redoing in user interfaces, supporting multiple forked versions of files and other
structures that may need to be both ramified and retracted, etc. The “need to undo”
operates at all levels of scale in computing and goes beyond simple backtracking to
being able to support multiple speculative world-lines.

Most of the ploys historically used to deal with “undoing” have been ad hoc and in-
complete. For example, features such as try/catch enable some speculation, but only
unwind the stack on failure; side effects are not undone automatically. Programmers
have little choice but to rely on error-prone idioms such as the command design pat-
tern [13]. This is analogous to the manual storage management mechanisms found in
low-level languages (e.g., malloc and free in C). In contrast, garbage collection trades
a little efficiency for enormous safety and convenience, and the worlds mechanism we
present in this paper provides a similar service for all levels of “doing-and-undoing.”

Web surfing is a useful analogy for thinking about worlds: during a simple explo-
ration of the web, you might just use the back button, but more complex explorations



(speculations) are more easily done with multiple tabs. All the changes you made dur-
ing your explorations remain local to the tab that you used, and can be made “global”
or not by your choice.

This is somewhat similar to transactions, which are another example of a general
mechanism that can handle some of the “computing before committing” problems at
hand here. But whereas the purpose of transactions is to provide a simple model for
parallel programming, the goal of worlds is to provide a clean and flexible mechanism
for controlling the scope of side effects. Unlike transactions, worlds are first-class values
and are not tied to any particular control structure—a world can be stored in a variable
to be revisited at a later time. This novel combination of design properties makes worlds
more general (albeit more primitive) than transactions. For example, neither the module
system shown in Section 3.3 nor the tree-undo feature presented in Section 6 could be
implemented using transactions. Furthermore, we show in Section 8 that it is straight-
forward to implement transactions in a language that supports worlds.

The rest of paper is structured as follows. Section 2 introduces the notion of worlds
and its instantiation in Worlds/JS. Section 3 illustrates some of the interesting idioms
made possible by this construct. Section 4 details the semantics of property lookup
in the presence of worlds. Section 5 describes the efficient implementation strategy
used in our Squeak-based prototype. Sections 6 and 7 present two case studies, the
first of which is used to benchmark the performance of our implementation. Section 8
compares worlds with related work, and Section 9 concludes.

2 Approach

The world is a new language construct that reifies the notion of program state. All com-
putation takes place inside a world, which captures all of the side effects—changes to
global and local variables, arrays, objects’ instance variables, etc.—that happen inside
it.

Worlds are first-class values: they can be stored in variables, passed as arguments to
functions, etc. They can even be garbage-collected just like any other object.

A new world can be “sprouted” from an existing world at will. The state of a child
world is derived from the state of its parent, but the side effects that happen inside
the child do not affect the parent. (This is analogous to the semantics of delegation
in prototype-based languages with copy-on-write slots.) At any time, the side effects
captured in the child world can be propagated to its parent via a commit operation.

2.1 Worlds/JS

A programming language that supports worlds must provide some way for program-
mers to:

– refer to the current world,
– sprout a new world from an existing world,
– commit a world’s changes to its parent world, and
– execute code in a particular world.



Fig. 1. Projections/views of the same object in three different worlds.

We now describe the way in which these operations are supported in Worlds/JS, an ex-
tension of JavaScript [9] we have prototyped in order to explore with the ideas discussed
in this paper. (Worlds/JS is available at http://www.tinlizzie.org/ometa-js/
#Worlds_Paper. No installation is necessary; you can experiment with the language
directly in your web browser.)

Worlds/JS extends JavaScript with the following new syntax:

– thisWorld — is an expression whose value is the world in which it is evaluated
(i.e., the “current world”), and

– in <expr> <block> — is a statement that executes <block> inside the world obtained
from evaluating <expr>.

All worlds delegate to the world prototype, whose sprout and commit methods can be
used to create a new world that is a child of the receiver, and propagate the side effects
captured in the receiver to its parent, respectively.

In the following example, we modify the y property of the same instance of Point in
two different ways, each in its own world, and then commit one of them to the original
world. This serves the dual purpose of illustrating the syntax of Worlds/JS and the
semantics of the sprout and commit operations.

A = thisWorld;
p = new Point(1, 2);

B = A.sprout();
in B { p.y = 3; }

C = A.sprout();
in C { p.y = 7; }

C.commit();



Fig. 2. The state of the “universe” shown in Figure 1 after a commit from world C.

Figures 1 and 2 show the state of the point in each world, before and after the
commit operation, respectively. Note that p’s identity is “universal,” and each world
associates it with p’s state in that world.

2.2 Safety Properties

Programming with worlds should not be error-prone or dangerous. In particular, if wchild
is a world that was sprouted from wparent :

– Changes in wparent—whether explicit (caused by assignments in wparent itself) or
implicit (caused by a commit from one of wchild’s siblings)—should never make
variables appear to change spontaneously in wchild . We call this the “no surprises”
property.

– Similarly, a commit from wchild should never leave wparent in an inconsistent state,
e.g., because the changes being committed are incompatible with changes made in
wparent after wchild was sprouted. We call this property “consistency.”

In this section, we explain how the semantics of worlds ensures these properties.

Preventing “Surprises” Once a variable (or slot, memory location, etc.) has been read
or modified in a world w, subsequent changes to that variable in w’s parent world are
not visible in w. This ensures that variables do not appear to change spontaneously in
child worlds.

For example, Figure 2 shows that the effects of the commit from world C (p.y← 7)
are not visible in world B (because it has also modified p.y). However, if yet another
world that is sprouted from A changes the value of p.x and then commits, as shown
below,

D = A.sprout();
in D {



Fig. 3. The state of the “universe” shown in Figure 2 after a commit from world D (not pictured).

p.x = 5;
}
D.commit();

the new value of p.x becomes visible not only in A, because it is D’s parent, but also
in B and C, since neither of them has read or modified p.x. (See Figure 3.) This is safe
because up to this point:

– neither B nor C has read the old value of p.x, so they will not be able to tell that it
has changed, and

– whatever writes have already been done in B and C (assuming the program is cor-
rect) are guaranteed not to depend on the value of p.x—otherwise p.x would have
been read in those worlds.

Preserving Consistency Note that the “no surprises” property does not prevent the
state of a parent world from changing as a result of commits from its children—after
all, the sole purpose of the commit operation is to change the state of the parent world.
But not all such changes are safe: certain kinds of changes could leave the parent world
in an inconsistent state. This is why the commit operation of worlds, like its counterpart
in transaction-processing systems, is guarded by a serializability check.

A commit from wchild to wparent is only allowed to happen if, at commit-time, all of
the variables (or slots, memory locations, etc.) that were read in wchild have the same
values in wparent as they did when they were first read by wchild . If this is not the case,
some of the assignments that were made in wchild may have been based on values that
are now out of date. A commit that fails the serializability check is aborted, leaving both
child and parent worlds unchanged, and throws a CommitFailed exception.

Section 5 describes the implementation of the commit operation, including the seri-
alizability check described here.



3 Worlds by Example

The following examples illustrate some of the applications of worlds. Other obvious
applications (not discussed here) include sand-boxing and heuristic search.

3.1 Better Support for Exceptions

In languages that support exception-handling mechanisms (e.g., the try/catch state-
ment), a piece of code is said to be exception-safe if it guarantees not to leave the
program in an inconsistent state when an exception is thrown. Writing exception-safe
code is a tall order, as we illustrate with the following example:

try {
for (var idx = 0; idx < xs.length; idx++)

xs[idx].update();
} catch (e) {

// ...
}

Our intent is to update every element of xs, an array. The problem is that if one of
the calls to update throws an exception, some (but not all) of xs’ elements will have
been updated. So in the catch block, the program should restore xs to its previous
consistent state, in which none of its elements was updated.

One way to do this might be to make a copy of every element of the array before
entering the loop, and in the catch block, restore the successfully-updated elements to
their previous state. In general, however, this is not sufficient since update may also
have modified global variables and other objects on the heap. Writing truly exception-
safe code is difficult and error-prone.

Versioning exceptions [23] offer a solution to this problem by giving try/catch
statements a transaction-like semantics: if an exception is thrown, all of the side effects
resulting from the incomplete execution of the try block are automatically rolled back
before the catch block is executed. In a programming language that supports worlds
and a traditional (non-versioning) try/catch statement, the semantics of versioning
exceptions can be implemented as a design pattern. We illustrate this pattern with a
rewrite of the previous example:

try {
in thisWorld.sprout() {

for (var idx = 0; idx < xs.length; idx++)
xs[idx].update();

thisWorld.commit();
}

} catch (e) {
// no clean-up required!

}

Note that the statements of the original try block are now evaluated in a new
world that will capture their side effects. Note also that inside the in statement, the
pseudo-variable thisWorld refers to this new world, and not its parent world. There-
fore, if the loop terminates normally (i.e., without throwing an exception), the statement



thisWorld.commit(); will propagate the side effects to the parent world. On the other
hand, if an exception is thrown, control will pass to the catch block before the commit
operation is executed, and thus the side effects will be discarded. (In fact, the new world
will eventually be garbage-collected, since it is not referenced by any variables.)

3.2 Undo for Applications

We can think of the “automatic clean-up” supported by versioning exceptions as a kind
of one-level undo. In the last example, we implemented this by capturing the side effects
of the try block—the operation we may need to undo—in a new world. The same
idea can be used as the basis of a framework that makes it easy for programmers to
implement applications that support multi-level undo.

Applications built using this framework are objects that support two operations:
perform and undo. Clients use the perform operation to issue commands to the appli-
cation, and the undo operation to restore the application to its previous state (i.e., the
state it was in before the last command was performed). The example below illustrates
how a client might interact with a counter application that supports the commands inc,
dec, and getCount, for incrementing, decrementing, and retrieving the counter’s value,
respectively. (The counter’s value is initially zero.)

counter.perform(’inc’);
counter.perform(’inc’);
counter.perform(’dec’);
counter.undo(); // undo ’dec’
print(counter.perform(’getCount’)); // outputs ’2’

The interesting thing about our framework is that it allows programmers to im-
plement applications that support multi-level undo for free, i.e., without having to use
error-prone idioms such as the command design pattern [13]. The implementation of
the counter application—or rather, a factory of counters—is shown below:

makeCounter = function() {
var app = new Application();
var count = 0;
app.inc = function() { count++; };
app.dec = function() { count--; };
app.getCount = function() { return count; };
return app;

};

Note that the counter application is an instance of the Application class.
Application is our framework; in other words, it is where all of the undo functionality
is implemented. Its source code is shown in Figure 4.

The state of the application is always accessed in a world that “belongs” to the ap-
plication. When the application is instantiated, it has only one world. Each time a client
issues a command to the application via its perform operation, the method that corre-
sponds to that command (the one with the same name as the command) is invoked in
a new world. This new world is sprouted from the world that holds the previous ver-
sion of the application’s state (i.e., the one in which the last command was executed).



Application = function() { };
Application.prototype = {

worlds: [thisWorld],
perform: function(command) {

var w = this.worlds.last().sprout();
this.worlds.push(w);
in w { return this[command](); }

},
undo: function() {

if (this.worlds.length > 0)
this.worlds.pop();

},
flattenHistory: function() {

while (this.worlds.length > 1) {
var w = this.worlds.pop();
w.commit();

}
}

};

Fig. 4. A framework for building applications that support multi-level undo.

The undo operation simply discards the world in which the last command was exe-
cuted, effectively returning the application to its previous state. Lastly, the (optional)
flattenHistory operation coalesces the state of the application into a single world,
which prevents clients from undoing past the current state of the application.

Note that the application’s public interface (the perform and undo methods) essen-
tially models the way in which web browsers interact with online applications, so this
technique could be used in a web application framework like Seaside [8].

Our Worlds/Squeak image includes a text editor implementation that supports multi-
level undo using the idiom described in this section. It is available for download at
http://www.tinlizzie.org/˜awarth/worlds.

3.3 Extension Methods in JavaScript

In JavaScript, functions and methods are “declared” by assigning into properties. For
example,

Number.prototype.fact = function() {
if (this == 0)

return 1;
else

return this * (this - 1).fact();
};

adds the factorial method to the Number prototype. Similarly,

inc = function(x) { return x + 1 };



declares a function called inc. (The left-hand side of the assignment above is actually
shorthand for window.inc, where window is bound to JavaScript’s global object.)

JavaScript does not support modules, which makes it difficult, sometimes even im-
possible for programmers to control the scope of declarations. But JavaScript’s declara-
tions are really side effects, and worlds enable programmers to control the scope of side
effects. We believe that worlds could serve as the basis of a powerful module system
for JavaScript, and have already begun experimenting with this idea.

Take extension methods, for example. In dynamic languages such as JavaScript,
Smalltalk, and Ruby, it is common for programmers to extend existing objects/classes
(e.g., the Number prototype in JavaScript) with new methods that support the needs of
their particular application. This practice is informally known as monkey-patching [4].
Monkey-patching is generally frowned upon because, in addition to polluting the in-
terfaces of the objects involved, it makes programs vulnerable to name clashes that
are impossible to anticipate. Certain module systems, including those of MultiJava [6]
and eJava [33], eliminate these problems by allowing programmers to declare lexically-
scoped extension methods. These must be explicitly imported by the parts of an appli-
cation that wish to use them, and are invisible to the rest of the application.

The following example shows that worlds can be used to support this form of mod-
ularity:

ourModule = thisWorld.sprout();
in ourModule {

Number.prototype.fact = function() { ... };
}

The factorial method defined above can only be used inside ourModule, e.g.,

in ourModule {
print((5).fact());

}

and therefore does not interfere with other parts of the program.
This idiom can also be used to support local rebinding, a feature found in some

module systems [3, 2, 7] that enables programmers to locally replace the definitions of
existing methods. As an example, we can change the behavior of Number’s toString
method only when used inside ourModule:

in ourModule {
numberToEnglish = function(n) { ... };
Number.prototype.toString = function() {

return numberToEnglish(this);
};

}

and now the output generated by

arr = [1, 2, 3];
print(arr.toString());
in ourModule {

print(arr.toString());
}



is
[1, 2, 3]
[one, two, three]

A more detailed discussion of how worlds can be used to implement a module sys-
tem for JavaScript, including a variation of the idiom described above that supports side-
effectful extension methods, can be found in the first author’s Ph.D. dissertation [31].

4 Property Lookup Semantics

This section formally describes the semantics of property lookup in Worlds/JS, which
is a natural generalization of property lookup in JavaScript. We do not formalize the
semantics of field lookup in Worlds/Squeak, since it is just a special case of the former
in which all prototype chains have length 1 (i.e., there is no delegation).

4.1 Property Lookup in JavaScript
JavaScript’s object model is based on single delegation, which means that every object
inherits (and may also override) the properties of its “parent” object. The only exception
to this rule is Object.prototype (the ancestor of all objects), which is the root of
JavaScript’s delegation hierarchy and therefore does not delegate to any other object.

The semantics of property lookup in JavaScript can be formalized using the follow-
ing two primitive operations:

(i) getOwnProperty(x, p), which looks up property p in object x without looking up
the delegation chain. More specifically, the value of getOwnProperty(x, p) is

– v, if x has a property p that is not inherited from another object, and whose
value is v, and

– the special value none, otherwise;
(ii) parent(x), which evaluates to

– y, the object to which x delegates, or
– the special value none, if x does not delegate to any other object.

and the following set of inference rules:

getOwnProperty(x, p) = v
v "= none

lookup(x, p) = v
(JS-LOOKUP-OWN)

getOwnProperty(x, p) = none
parent(x) = none

lookup(x, p) = none
(JS-LOOKUP-ROOT)

getOwnProperty(x, p) = none
parent(x) = y

y "= none
lookup(y, p) = v
lookup(x, p) = v

(JS-LOOKUP-CHILD)



4.2 Property Lookup in Worlds/JS

In Worlds/JS, property lookup is always done in the context of a world. And since it
may be that an object x has a property p in some world w but not in another, the prim-
itive operation getOwnProperty(x, p) must be replaced by a new primitive operation,
getOwnPropertyInWorld(x, p,w).

Another primitive operation we will need in order to formalize the semantics of
property lookup in Worlds/JS is parentWorld(w), which yields w’s parent, or the spe-
cial value none, if w is the top-level world.

Using these two new primitive operations, we can define a new operation,
getOwnProperty(x, p,w), which yields the value of x’s p property in world w, or (if
x.p is not defined in w) in w’s closest ancestor:

getOwnPropertyInWorld(x, p,w) = v
v "= none

getOwnProperty(x, p,w) = v
(WJS-GETOWNPROPERTY-OWN)

getOwnPropertyInWorld(x, p,w) = none
parentWorld(w) = none

getOwnProperty(x, p,w) = none
(WJS-GETOWNPROPERTY-ROOT)

getOwnPropertyInWorld(x, p,w1) = none
parentWorld(w1) = w2

w2 "= none
getOwnProperty(x, p,w2) = v
getOwnProperty(x, p,w1) = v

(WJS-GETOWNPROPERTY-CHILD)

And finally, using the worlds-friendly variant of getOwnProperty defined above,
the inference rules that formalize the semantics of lookup in Worlds/JS can be written
as follows:

getOwnProperty(x, p,w) = v
v "= none

lookup(x, p,w) = v
(WJS-LOOKUP-OWN)

getOwnProperty(x, p,w) = none
parent(x) = none

lookup(x, p,w) = none
(WJS-LOOKUP-ROOT)

getOwnProperty(x, p,w) = none
parent(x) = y

y "= none
lookup(y, p,w) = v
lookup(x, p,w) = v

(WJS-LOOKUP-CHILD)



Fig. 5. The property lookup order used when evaluating x′′.p in world w′′ (the notation ∆x,w
represents the properties of x that were modified in w).

Note that these rules closely mirror those that describe the semantics of lookup in
JavaScript—the only difference is that getOwnProperty and lookup now each take a
world as an additional argument.

Figure 5 illustrates the property lookup order that results from the algorithm de-
scribed above. The solid vertical lines in the diagram indicate delegates-to relationships
(e.g., object x′ delegates to x), whereas the solid horizontal lines indicate is-child-of re-
lationships (e.g., world w′ is a child of w). Note that the chain of worlds gets precedence
over the object delegation chain; in other words, any relevant “version” of an object may
override the properties of the object to which it delegates. This lookup order preserves
JavaScript’s copy-on-write delegation semantics, i.e., if a delegates to b, and then we
assign into a’s p property, subsequent changes to b’s p property will not affect a. So
no matter what world a statement is executed in—whether it is the top-level world, or
a world that sprouted from another world—it will behave in exactly the same way as it
would in “vanilla” JavaScript.

5 Implementation

Our Worlds/JS prototype works by translating Worlds/JS programs into JavaScript code
that can be executed directly in a standard web browser, and it is useful for doing “quick
and dirty” experiments. However, JavaScript’s lack of support for weak references re-
quired a costly work-around that makes Worlds/JS unsuitable for larger experiments.

In this section, we describe the implementation strategy used in our more
performant prototype of worlds, which is based on Squeak Smalltalk [16]. (The
Worlds/Squeak image, which also includes the case study discussed in Section 6, is
available for download at http://www.tinlizzie.org/˜awarth/worlds.)

5.1 Data Structures

The core of our implementation consists of two classes: WObject, which is the super-
class of all “world-friendly” objects (i.e., objects that exhibit the correct behavior when



viewed/modified inside worlds), and WWorld, which represents worlds. The methods
of WObject and its subclasses are automatically instrumented in order to indirect all
instance variable accesses (reads and writes) through the world in which they are being
evaluated.

A WWorld w contains a hash table that, similar to a transaction log, associates
WObjects with

– a reads object, which holds the “old” values of each slot of the WObject when it
was first read in w, or the special Don’tKnow value for each slot that was never read
in w, and

– a writes object, which holds the most recent values of each slot of the WObject, or
the special Don’tKnow value for slots that were never written to in w.

The keys of this hash table are referenced weakly to ensure that the reads and writes
objects associated with a WObject that is no longer referenced by the program will be
garbage collected. Also, reads and writes objects are instantiated lazily, so (for example)
an object that has been read but not written to in a world will have a reads object, but
not a writes object, in that world.

5.2 The Slot Update Operation: (xi ← v)w

To store the value v in x’s ith slot in world w,

1. If w does not already have a writes object for x, create one.
2. Write v into the ith slot of the writes object.

5.3 The Slot Lookup Operation: (xi)w

To retrieve the value stored in x’s ith slot in world w,

1. Let wcurrent = w and ans = unde f ined.
2. If wcurrent has a writes object for x and the value stored in the ith slot of the writes

object is not Don’tKnow, set ans to that value and go to step 5.
3. If wcurrent has a reads object for x and the value stored in the ith slot of the reads

object is not Don’tKnow, set ans to that value and go to step 5. (This step ensures
the “no surprises” property, i.e., that a slot value does not appear to change sponta-
neously in w when it is updated in one of w’s ancestors.)

4. Otherwise, set wcurrent to wcurrent ’s parent, and go to step 2.
5. If wcurrent = w, skip to step 8.
6. If w does not already have a reads object for x, create one.
7. If the value stored in the ith slot of the reads object is Don’tKnow, write ans into

that slot.
8. Return ans.

Note that the slots of a new WObject are always initialized with nils in the top-
level world. This mirrors the semantics of object instantiation in Smalltalk and ensures
that lookup always terminates.

(We initially implemented the slot lookup operation in Smalltalk, but later re-
implemented it as a primitive, which resulted in a significant performance improvement.
See Section 6.3 for details.)



Fig. 6. A successful commit.

5.4 Reads and Writes in the Top-Level World

The top-level world has no need for reads objects, since it has no parent world to commit
to. This gave us an idea: if we made every WObject be its own writes object in the top-
level world, there would be no need for a hash table. This optimization minimizes the
overhead of using WObjects in the top-level world—after all, the slot update and lookup
operations can manipulate the WObject directly, without the additional cost of a hash
table lookup.

5.5 The Commit Operation

To commit the side effects captured in world wchild to its parent, wparent ,

1. Serializability check: for all xi = v in each of wchild’s reads objects, make sure that
either v = Don’tKnow or the current value of xi in wparent is equal to v. (Otherwise,
throw a CommitFailed exception.)

2. Propagate all of the information in wchild’s writes objects to wparent’s writes objects,
overriding the values of any slots that have already been assigned into in wparent .

3. Propagate all of the information in wchild’s reads objects to wparent’s reads objects,
except for the slots that have already been read from in wparent . (This step ensures
that the serializability check associated with a later commit from wparent will protect
the consistency of its own parent.)

4. Clear wchild’s hash table.

Note that in step 2, new writes objects must be created for any objects that were written
to in wchild , but not in wparent . Similarly, in step 3, new reads objects must be created
for any objects that were read from in wchild , but not in wparent (unless wparent is the
top-level world, which, as discussed in Section 5.4, has no need for reads objects).



Fig. 7. A failed commit.

5.6 Pulling it all together

The Worlds/Squeak code and diagrams in Figures 6 and 7 show these data structures
and operations in action.

In Figure 6 (A), we see a point p1 and a world w that was sprouted from the
top-level world. In (B), we see what happens when we decrement p’s x field in w.
(WWorld>>eval: is equivalent to the in-statement in Worlds/JS.) Note that this step
results in the creation of a hash table entry for p. (Note also that the key used to index
the hash table is p itself—the identity of an object never changes, no matter what world
it’s in.) The old (1) and new (0) values of x are stored in p’s reads and writes objects,
respectively; the question marks denote the Don’tKnow value. In (C), p’s y field is up-
dated in the top-level world with the value 5. Lastly, (D) shows the effects of a commit
on w. The old values stored in the reads objects in the child world (in this case there
is only one, p.x = 1) are compared against the corresponding (current) values in the
parent world. Since these are equal, the changes that were stored in the child world (p.x
← 0) are propagated to the parent world. Note that a successful commit does not cause
the child world to be discarded; it simply clears the information stored in that world so
that it can be used again.

Figure 7 illustrates a slightly different senario. In (B), both x and y are read in
order to compute the new value of x and as a result, both values are recorded in the
reads object. In (C), y is updated in the top-level world. In (D), w tries to commit but
fails the serializability check because the value of y that was recorded in the reads
object is different from the current value of y in the top-level world. This results in a
CommitFailed exception, and the commit operation is aborted. Note that (C) and (D)
are identical—a failed commit leaves both the parent and child worlds unchanged. This
enables the programmer to examine (and also extract) potentially useful values in the

1 p is an instance of WPoint, which is a subclass of WObject.



Fig. 8. Our bitmap editor, implemented in Worlds/Squeak, supports tree-undo.

child world using its #eval: method. The programmer may also start anew by sprouting
a new child world.

6 Case Study #1: A Bitmap Editor

To gauge the utility of worlds in practical applications, we have implemented a bitmap
editor that supports a sophisticated tree-undo mechanism. This is an interesting chal-
lenge for worlds because it involves large bitmap objects (∼1M slots per bitmap) that
must not only be manipulated interactively and efficiently, but also passed to Squeak’s
graphics primitives, which do not support worlds.

Applications that support (traditional) linear undo allow users to undo/redo a series
of actions. Tree-undo is a more general model for undo that enables users to create new
“branches” in the edit history and move from freely from branch to branch, which in
turn makes it convenient for different choices/possibilities to be explored concurrently.

Figure 8 shows the Graphical User Interface (GUI) of our bitmap editor. To the
right of the large painting area there are several tool-selecting buttons: three different
brushes, a bucket fill tool, and a color picker. Below these buttons, in addition to the
self-explanatory “save” and “quit,” there are buttons for managing the undo tree: “new
branch” creates a new branch that stems from the current undo record, and “delete
branch” discards the current branch. Last but not least, to the right of these buttons is a
view of the undo tree in which each thumbnail represents an undo record (the one with
the thick border is the current undo record), and each row of thumbnails represents a
sequence of states in the same branch.

While our bitmap editor (which comprises approximately 300 lines of Lesser-
phic2/Squeak code) is not particularly feature-rich, it is interesting enough to serve
as a benchmark for measuring the performance of Worlds/Squeak.



6.1 The implementation of tree undo

As illustrated in Section 3.2, the semantics of worlds provides a good basis for imple-
menting the undo mechanism: all we have to do is create a chain of worlds in which
to capture changes to the state of the application. The undo operation, then, involves
merely switching the world from which we view the state of the application. This idiom
gives the application designer complete control over what parts of the application’s state
should be undoable (i.e., what parts are always modified in and viewed from a world in
the undo chain), and the granularity of the undo operation (i.e., how often new worlds,
or “undo records,” are created).

In our bitmap editor, the only piece of application state we chose to make undoable
was the bitmap itself. So whenever the user performs an action that modifies the bitmap,
e.g., a pen stroke, we sprout a new world from the current world, and make the appro-
priate changes to the bitmap in that new world. After drawing three strokes for example,
we are left with a chain of four worlds (the first represents the state of the bitmap before
the first stroke).

Extending this idiom to support tree-undo was straightfoward. To make a new
branch, we simply sprout a new world from the current world, and to delete a branch,
we remove all references to the root of that branch (as a result, its undo records and
their associated worlds will eventually be garbage-collected). Our program must main-
tain undo records, which are data structures that represent the branches of the undo tree,
because a world does not retain a list of its children (after all, this would prevent worlds
from ever being garbage-collected, since every world is a descendant of the top-level
world).

6.2 Bitmap Representation

We wanted our editor to feel “smooth.” A user should, for example, be able to edit a
500×500-pixel bitmap while the screen is updated 30 times per second. This meant that
our application had to sustain 7.5M slot lookup operations per second just to display
the bitmap. Our first (naive) implementation of Worlds/Squeak, in which WObject’s
lookup operation was implemented entirely in Smalltalk, did not meet these require-
ments: while drawing a line on a 2.4 GHz Core Duo computer, we observed a refresh
rate of about 1 fps—far from usable in any reasonable standard.

To increase the performance of our application, we created a variable-length, non-
pointer subclass of WObject called WBitmap. We made WBitmaps structurally identical
to Squeak’s Bitmaps so that the BitBlt primitives could be used to draw on WBitmaps.2
We implemented “write-only” features like line drawing, for example, by passing the
WBitmap’s “delta” to a BitBlt primitive that efficiently mutates it as desired. (By modi-
fying the delta, we ensure that the changes are only visible in the appropriate world.)

We also realized that WObject’s slot lookup method could be implemented as a
Squeak primitive; in fact, we took this idea one step further and implemented a prim-
itive that reads all of the slots of a WObject, and returns a “flattened snapshot” of that
object, as shown in Figure 9. Note that, because all of its state is stored in a single

2 Some primitives turned out to have strict type checks that prevented us from using them.



Fig. 9. The flatten operation.

Squeak object (i.e., in a contiguous block of memory), a flattened WObject can be used
to interface with parts of the system that are not “worlds-aware,” including Squeak’s
graphics system. To flood-fill an area of a WBitmap, for instance, we pass the bitmap’s
delta and a flattened snapshot to a primitive; the flattened object is used for reading
values out of the bitmap, and the delta is used as a target for the writes.

The downside of representing WBitmaps as arrays of “immediate” (i.e., non-pointer)
values is that it makes it impossible for their slots to reference the special Don’tKnow
value that causes lookup to be delegated to the parent world—after all, every 4-byte
value is a valid (ARGB) pixel value. We got around this problem by using the value
“0x00000001” (the darkest, completely transparent blue) as WBitmap’s equivalent of
WObject’s Don’tKnow value. A more general work-around—which would be necessary
for applications that require access to all possible 4-byte values—would be to use an
additional bit array (one bit per slot in the object) whose values indicate whether or not
a slot in a “delta” or “orig” object contains a valid value.

6.3 Benchmarking the Bitmap Editor

After we introduced the flatten primitive, our bitmap editor became really responsive:
while editing a 500×500-pixel bitmap on the same 2.4 GHz Core Duo computer, the
frame rate only drops below 30 once the length of the delegation chain—i.e., the dis-
tance between the current undo record and the root of the undo tree—reaches about 50.
(At this point, a casual user may start to notice a slowdown.)

In order to get a better idea of the performance characteristics of our bitmap edi-
tor (and of our Squeak-based implementation of worlds), we conducted the following
experiment. We started with a 20,000-pixel bitmap, created a chain of worlds, and mea-
sured the time it takes to read all of the slots (pixel values) of the bitmap from the world
at the end of the chain. Looking up a slot’s value requires a traversal of the world chain
until a valid (non-Don’tKnow) value is found, so the “load factor,” i.e., the number of



Fig. 10. time to flatten a 20,000-slot bitmap.

value-holding slots at each level, dictates the typical length a lookup operation, which
in turn determines the performance of the application.

Figure 10 shows the results of this experiment. When the load factor is close to
zero, the lookup primitive must nearly always scan all of the worlds in the chain, and
as a result, time grows linearly with the number of worlds in the chain. When the load
factor is high, e.g., when 50% of the slots are filled randomly at each level, the lookup
primitive only has to inspect a few worlds—two, on average—so the length of the chain
has no measurable effect on the performance of our application.

The “lookup” and “flatten” primitives provide significant performance improve-
ments. Without them, reading every slot of a 500×500-pixel bitmap through a chain
of 1000 worlds takes 27.17 seconds and 137 milliseconds with a load factor of 0.005%
and 50%, respectively. Using the “lookup” primitive to access each slot reduces these
times to 0.36 seconds and 10 milliseconds, respectively. Using the “flatten” primitive
further reduces these times to 0.038 seconds and less than 1 millisecond, respectively.
On average, the use of these primitives improved the performance of our application by
two orders of magnitude.

7 Case Study #2: OMeta + Worlds

Consider the semantics of the ordered choice operator (|) in OMeta [32], or if you
prefer, in Parsing Expression Grammars and Packrat Parsers [11, 12]. If a match fails
while the first operand is being evaluated, the parser, or more generally, the matcher



OMeta._or = function() {
var origInput = this.input;
for (var idx = 0;

idx < arguments.length;
idx++) {

try {
this.input = origInput;
return arguments[idx]();

}
catch (f) {

if (f != fail)
throw f;

}

throw fail;
};

OMeta._or = function() {

for (var idx = 0;
idx < arguments.length;
idx++) {

var ok = true;
in thisWorld.sprout() {

try {

return arguments[idx]();
}
catch (f) {

ok = false;
if (f != fail)

throw f;
}
finally {

if (ok)
thisWorld.commit();

}
}

}
throw fail;

};
(A) (B)

Fig. 11. Two different implementations of OMeta’s ordered choice operator.

has to backtrack to the appropriate position on the input stream before trying the sec-
ond operand. We can think of this backtracking as a limited kind of undo that is only
concerned with changes to the matcher’s position on the input stream. Other kinds of
side effects that can be performed by semantic actions—e.g., destructive updates such
as assigning into one of the fields of the matcher object or a global variable—are not un-
done automatically, which means that the programmer must be specially careful when
writing rules with side effects.

To show that worlds can greatly simplify the management of state in backtrack-
ing programming languages like OMeta and Prolog, we have implemented a variant
of OMeta/JS [30] in which the choice operator automatically discards the side effects
of failed alternatives, and similarly, the repetition operator (*) automatically discards
the side effects of the last (unsuccessful) iteration. This was modification straightfor-
ward: since Worlds/JS is a superset of JavaScript—the language in which OMeta/JS
was implemented—all we had to do was redefine the methods that implement the se-
mantics of these two operators.

Figures 11 (A) and (B) show the original and modified implementations of the or-
dered choice operator, respectively. Note that the modified implementation sprouts a
new world in which to evaluate each alternative, so that the side effects of failed alter-
natives can be easily discarded. These side effects include the changes to the matcher’s



input stream position, and therefore the code that implemented backtracking in the orig-
inal version (this.input = origInput) is no longer required. Finally, the side effects
of the first successful alternative are committed to the parent world in the finally
block.

Similarly, the alternative implementation of the repetition operator (omitted for
brevity) sprouts a new world in which to try each iteration, so that the effects of the
last (unsuccessful) iteration can be discarded.

And thus, with very little additional complexity, worlds can be used to make the use
of side effects safer and easier to reason about in the presence of backtracking.

8 Related Work

In languages that support Software Transactional Memory (STM) [27, 14], every trans-
action that is being executed at a given time has access to its own view of the program
store that can be modified in isolation, without affecting other transactions. Therefore,
like worlds, STM enables multiple versions of the store to co-exist. But whereas the pur-
pose of transactions is to provide a simple model for parallel programming, the goal of
worlds is to provide a clean and flexible mechanism for controlling the scope of side ef-
fects. Unlike transactions, worlds are first-class values and are not tied to any particular
control structure—a world can be stored in a variable to be revisited at a later time. This
novel combination of design properties makes worlds more general (albeit more prim-
itive) than transactions. For example, neither the module system shown in Section 3.3
nor the tree-undo feature presented in Section 6 could be implemented using transac-
tions. Furthermore, in a language that supports threads, it would be straightforward to
implement the semantics of STM using worlds:

executeInNewThread {
in thisWorld.sprout() {

... // statements to run in the transaction
thisWorld.commit();

}
}

(The code above assumes that commits are executed atomically.)
Burckhardt et al.’s recent work on concurrent programming with revisions and isola-

tion types [5] provides a model in which programmers can declare what data they wish
to share between tasks (threads), and execute tasks concurrently by forking and joining
revisions. While a revision’s rjoin operation provides similar functionality to a world’s
commit operation, there are some important differences. For example, unlike rjoin, the
commit operation detects read-write conflicts (these result in a CommitFailed excep-
tion). Also, “revisions do not guarantee serializability . . . but provide a different sort
of isolation guarantee” and the authors “posit that programmers, if given the right ab-
straction, are capable of reasoning about concurrent executions directly.” [5]. While this
may indeed be the case, we believe that serializability (which is supported by worlds)
makes for a much more understandable programming model.

The idea of treating the program store as a first-class value and enabling program-
mers to take snapshots of the store which could be restored at a later time first ap-
peared in Johnson and Duggan’s GL programming language [18]. This model was later



extended by Morrisett to allow the store to be partitioned into a number of disjoint
“sub-stores” (each with its own set of variables) that could be saved and restored sepa-
rately [22].

The main difference between previous formulations of first-class stores and worlds
lies in the programming model: whereas first-class stores have until now been presented
as a mechanism for manipulating a single store (or multiple partitions of the store, as
is the case with Morrisett’s work) through a save-and-restore interface, worlds enable
multiple versions of the store—several “parallel universes”—to co-exist in the same
program. This makes worlds a better fit for “programming via experiments”, i.e., a
programming style that involves experimenting with multiple alternatives, sometimes
making mistakes that require retraction in order to make fresh starts. (This is difficult to
do in mainstream imperative programming languages, due to the unconstrained nature
of side effects.) It also makes it possible for multiple “experiments” to be carried out in
parallel, which is something we intend to investigate in future work.

Tanter has shown that values that vary depending on the context in which they
are accessed or modified—(implicitly) contextual values—can be used to implement
a scoped assignment construct that enables programmers to control the scope of side
effects [29]. Although Tanter’s construct does not support the equivalent of the commit
operation on worlds, it is more general than worlds in the sense that it allows any value
to be used as a context. However, it is not clear whether this additional generality jus-
tifies the complexity that it brings to the programming model. For example, while it is
straightforward to modify a group of variables in the context of the current thread (e.g.,
thread id 382), or the current user (e.g., awarth), it is difficult to reason about the state of
the program when both contexts are active, since they need not be mutually exclusive.
(This is similar to the semantic ambiguities that are caused by multiple inheritance in
object-oriented languages.)

Smith and Ungar’s Us [28], a predecessor of today’s Context-Oriented Program-
ming (COP) languages [15], explored the idea that the state and behavior of an object
should be a function of the perspective from which it is being accessed. These perspec-
tives, known as layers, were very similar to worlds (they were first-class objects that
provided a context in which to evaluate expressions) but did not support the equivalent
of the commit operation.

Worlds enable programmers to enjoy the benefits of Functional Data Structures
(FDSs) [24] without having to plan for them ahead of time. For instance, the example
in Section 3.1 (Better Support for Exceptions) would require whatever data is modified
in the try block to be represented as a FDS, which is inconvenient and potentially very
time-consuming for the programmer. To make matters worse, the try block might call
a function—in this case, the programmer would have to (non-modularly) inspect the
code that implements that function in order to find out what data it may modify so that
she can change it into a FDS. With worlds, none of this is necessary.

Lastly, a number of mechanisms for synchronizing distributed and decentralized
systems (e.g., TeaTime [25, 26] and Virtual Time / Time Warp [17]) and optimistic
methods for concurrency control [21] rely on the availability of a rollback (or undo) op-
eration. As shown in Section 3.2, a programming language that supports worlds greatly



simplifies the implementation of rollbacks, and therefore could be a suitable platform
for building these mechanisms.

9 Conclusions and Future Work

We have introduced worlds, a new language construct that enables programmers to con-
trol the scope of side effects. We have instantiated our notion of worlds in Worlds/JS
and Worlds/Squeak (extensions of JavaScript and Squeak Smalltalk, respectively), for-
malized the semantics of property/field lookup in these languages, and shown that this
construct is useful in a wide range of applications. We have also described the efficient
implementation strategy that was used in our Squeak-based prototype.

We believe that worlds have the potential to provide a tractable programming model
for multi-core architectures. As part of the STEPS project [19, 20], we intend to investi-
gate the feasibility of an even more efficient (possibly hardware-based) implementation
of worlds that will enable the kinds of experiments that might validate this claim. For ex-
ample, there are many problems in computer science for which there are several known
algorithms, each with its own set of performance tradeoffs. In general, it is difficult to
tell when one algorithm or optimization should be used over another. Our hardware-
based implementation should make it practical for a program to choose among opti-
mizations simply by sprouting multiple “sibling worlds”—one for each algorithm—and
running all of them in parallel. The first one to complete its task would be allowed to
propagate its results, and the others would be discarded.

Also as part of the STEPS project, we intend to build a multimedia authoring sys-
tem that supports “infinite” undo. Our bitmap editor and text editor (referenced in Sec-
tion 3.2) are two distinct examples of undo, but we hope use worlds to implement a data
model for all media types.

The top-level world’s commit operation, which is currently a no-op, might be an
interesting place to explore the potential synergy between worlds and persistence. For
example, a different implementation of TopLevelWorld>>commit that writes the cur-
rent state of every object in the system to disk (to be retrieved at a later time) could be
the basis of a useful checkpointing mechanism.

One current limitation of worlds is that they only capture the in-memory side ef-
fects that happen inside them. Programmers must therefore be careful when executing
code that includes other kinds of side effects, e.g., sending packets on the network and
obtaining input from the user. It would be interesting to investigate whether some of the
techniques used in reversible debuggers such as EXDAMS [1] and IGOR [10] could
be used to ensure that, for example, when two sibling worlds read a character from the
console, they get the same result.
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