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Abstract. Programming languages often hide their implementation at
a level of abstraction that is inaccessible to programmers. Decisions and
tradeoffs made by the language designer at this level (single vs. multiple
inheritance, mixins vs. Traits, dynamic dispatch vs. static case analysis,
etc.) cannot be repaired easily by the programmer when they prove in-
convenient or inadequate. The artificial distinction between implementa-
tion language and end-user language can be eliminated by implementing
the language using only end-user objects and messages, making the im-
plementation accessible for arbitrary modification by programmers. We
show that three object types and five methods are sufficient to bootstrap
an extensible object model and messaging semantics that are described
entirely in terms of those same objects and messages. Raising the imple-
mentation to the programmers’ level lets them design and control their
own implementation mechanisms in which to express concise solutions
and frees the original language designer from ever having to say “I’m
sorry”.

1 Introduction

Most programming languages and systems make a clear distinction between
the implementation level in which the system is built and the ‘end-user’ level
in which programs are subsequently written. The abstractions and semantics
provided by these programming systems are effectively immutable. Metaobject
Protocols (MOPs) [5] are designed to give back some power to programmers,
letting them extend the system with new abstractions and semantics. We are
interested in a different approach to solving the same problem where we eliminate
the distinction between the implementation and user levels of the programming
system.

As an example of the problem we are trying to solve, consider the implemen-
tation of a Lisp-like language with several atomic object types. The implementer
must choose a representation for these objects in some (typically lower-level)
implementation language. The choice of representation can have a profoundly
limiting effect on the ability of both the implementer and end-user to extend
the language with new types, primitive functionality and semantics at some
later time. Our Lisp-like end-user language might have C as its implementation
language and use a discriminated union to store atomic objects and ‘cons’ cells:
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enum ObjectTag { Number, String, Symbol, Cons };

struct Object {
enum ObjectTag tag;

union {
struct Number number;
struct String string;

struct Symbol symbol;
struct Cons cons;

} payload;

};

With this representation, each primitive in the end user language that manipu-
lates data would use conditional (if or switch) statements to select appropriate
behaviour according to the tag field.

This simple object model has already made significant design decisions and
rendered them immutable:

– All objects must start with an integer tag field.
– The internal layout of the four intrinsic types cannot be modified at runtime.

The consequences of these decisions include:

– New payloads cannot be added by end user code, especially if they require
more storage than the intrinsic types.

– New tags cannot be added unless all primitives are explicitly designed to
work in the presence of arbitrary tags, or the user is in a position to un-
derstand, modify and then recompile every part of the base language imple-
mentation that might be concerned with object tags.

We could start to address these problems by creating a more general object
model for our structured data, for example by adding a size field to allow
for arbitrary payloads. Unfortunately each such change adds complexity to the
language runtime and imposes more ‘meta-structure’ in the objects, ultimately
making them less amenable to unanticipated deep modifications in the future.

These problems are even more severe when we consider object-oriented lan-
guages. The object model for a simple prototype-based language might specify
‘method dictionary’ and ‘parent’ slots in every object. The runtime would look
up a message name in the receiver’s methodDictionary, trying again in the
parent object’s method dictionary if no match is found, continuing until finding
a match or reaching the end of the parent chain. Adding multiple delegation to
this language would be difficult because the runtime assumes that the parent
field contains a single object and not, for example, a list of parent objects to try
in turn.

The trouble is that some of the semantics of the above example (single del-
egation between instances) are reified eagerly in the execution mechanisms of
the language. This in turn eagerly imposes supporting meta-structure (instances
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chained through a parent slot) within the objects. Since the execution mecha-
nisms are expressed in an implementation language at a lower level of abstraction
than that of the end user language, neither the mechanisms nor their effects on
object structure can be modified by end users. Moreover, adapting the implemen-
tation machinery for reuse in supporting a different end-user language is more
difficult when the required changes are pervasive and expressed in a low-level
implementation language. In this paper we present an object model intended to
eliminates most of these problems:

– We show how an object-based model of data can help alleviate some of the
problems of extensibility in programming language implementation (Sec-
tion 2).

– We define a simple, extensible object model that imposes no structure on
end-user objects (Section 3).

– The end-user object model provides message-passing semantics implemented
using its own objects and messaging mechanism, making the semantics of
messaging modifiable or even replaceable from within the end-user language.
We show that three kinds of object and five small methods are sufficient to
achieve this (Section 3.1).

– The flexibility gained by exposing the object model’s semantics is illustrated
by showing that it can be extended easily to support language features in-
cluding multiple inheritance and mixed-mode execution [10] (Sections 2.2
and 3).

– We validate the use of this approach for production systems by showing that:
it has low space overhead (Section 5); its performance can be competitive
with, and in some cases even better than, equivalent ‘static’ implementation
techniques (Section 5.3); existing object models can be easily implemented
on top of the model (Section 5.1); advanced compositional techniques such
as Traits [11] can be accommodated (Section 5.2).

2 The object model by example

The object model describes one thing: how an object responds to a message.
Each object is associated with a vtable object. When a message is sent to an
object O, its vtable V is asked to find the appropriate method to run. This is
done by sending the message ‘lookup’ to V , with the message name as argument.
The semantics of sending a message to O are therefore determined entirely by
V ’s response to the ‘lookup’ message. By overriding (or redefining) ‘lookup’ we
can change the semantics of message sending for some (or all) objects.

The vtable object doesn’t have to be a table. It can determine the method
to run for a given message send in any way it wants. Often, though, vtables are
simply dictionaries mapping message names onto method implementations.

This section introduces the object model by using it to solve two of the
problems mentioned in the introduction: adding a new atomic object type to a
Lisp-like language and converting single delegation to multiple delegation in a
message-passing language.
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2.1 Adding data types to a language

For our Lisp-like language we might have a length primitive that tells us how
many elements are present in a string or list. Using the tag field in the Object
structure to discriminate the type of payload, length might look like this:

int length(struct Object *object)
{

switch (object->tag)

{
case Number: error("numbers have no length");
case String: return object->payload.string.length;

case Symbol: error("symbols have no length");
case Cons: return object->payload.cons.cdr

? 1 + length(object->payload.cons.cdr)

: 1;
default: error("illegal tag");

}
}

Let’s add a vector type to this language. We have to extend the above switch
statement with a new case to take into account our new data type and its tag
value:

case Vector: return object->payload.vector.length;

This isn’t too bad if we are the only user of the language and we have access
to the source code of the implementation. However, the situation is much worse
if we want to share the new type with other users of the language, possibly as
a third-party extension; any primitive that is not modified with an additional
case to handle vectors will cause a run-time error.

It would be better to store the relevant case implementation from each prim-
itive function in the data type itself. Using our object model the new data type
is added to the language by creating a new vtable (object behaviour) and then
installing its primitives as methods in the vtable. Figure 1 shows what this would
look like in our object model, again using C as the implementation language.

This is more than advocating an object-oriented style of programming lan-
guage construction. Consider the same Lisp-like language implemented in C++.
Even if the length primitive was made a virtual function of each supported data
type, we would have to recompile every file after adding Vector since the lay-
out of C++ vtables is computed at compile time; adding a new virtual method
would invalidate all previous assumptions about the vtable layout.

Perhaps more compelling is an example involving an object-oriented language
that uses the object model and that can directly modify the semantics of its own
messaging mechanism.
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struct vtable *Vector vt = 0;

int Vector length(struct Vector *vector) {
return vector->length;

}

void initialise(void) {
...

Vector vt = send(vtable, s allocate,
sizeof(struct vtable));

send(Vector vt, s addMethod, s length, Vector length);

...
}

int length(struct object *object) {
return send(object, s length);

}

Fig. 1. Creating a new type and associating functionality with it. The vtable Vector vt
describes the behaviour of the new type. Invoking the method s addMethod in it
makes an association between the selector s length and the method implementation
Vector length. The length primitive can now simply invoke the method s length in
any object and expect it to respond appropriately regardless of the number of data
types supported by—or added to—the language. (The variables prefixed with s are
symbols: interned, unique strings suitable for identifying method names.)

2.2 Adding multiple inheritance to a prototype-based language

This example uses a high-level, prototype-based programming language with
single delegation that uses the object model directly for its end user objects.1

We will use this language for several examples. Its syntax is very close to that
of Smalltalk [4] with a few small differences (described in Appendix A).

Everything in our object model is an object, including the vtables that de-
scribe the behaviour of objects. Interacting with vtables is just a matter of
invoking methods in them. One such method is called lookup; it takes a method
name as an argument and returns a corresponding method implementation. By
overriding (or redefining) this method we can change the semantics of message
sending for some (or all) objects.

The prototype-based language provides the programmer with single inheri-
tance; a given family of objects inherits behaviour from a parent family (with
all families eventually inheriting behaviour from Object). Figure 2 shows how
the programmer can directly add multiple inheritance to this language, with-

1 This language is written entirely in itself and can be downloaded, along with
many examples including those presented in this paper, from http://piumarta.
com/software/cola
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out loss of performance.2 With these additions to the language, and given three
prototype families C1, C2 and C3

C1 : Object ()
C1 m [ ’this is m’ putln ]

C2 : Object()
C2 n [ ’this is n’ putln ]

C3 : C1 () "C3 inherits from C1"

the programmer can now dynamically add C2 as a parent of C3

C3 vtable addParent: C2 vtable

so that objects in its family can execute methods inherited from both C1 and
C2:

C3 new
m; "inherited from C1"

n "inherited from C2"

A serious implementation would of course have to take state and behavioural
conflicts into account, although this could be as simple as allowing only one
parent to be stateful and disallowing duplicated message names. (Our imple-
mentation of Traits [11] in Section 5.2 illustrates this.)

3 Open, extensible object models

An object typically describes both state and behaviour that acts on (or is in-
fluenced by) that state. We might account for both state and behaviour in the
object model, but it would be simpler to model just one of them and then use
it to provide the other indirectly. We choose to model (and expose) behaviour
as a set of methods that are invoked in an object by name; access to state, if
appropriate, is then provided through ‘accessor’ methods.3

Figure 3 illustrates this simple model: an object is some opaque quantity in
which a method can be invoked by name; we call the set of methods associated
with a given object its behaviour. Since we wish to avoid imposing structure on
end user objects, the description of behaviour is stored separately from the object
in a manner similar to most object-oriented languages; in particular, parent slots
and method tables are not stored in objects. An object is therefore a tuple of
behaviour and state. Since the behaviour is decoupled from the internal state

2 The message sending mechanism uses a method cache to memoize the result of
invoking lookup in a given vtable for a given messageName. The overhead of iterating
through multiple parents is incurred only when the method cache misses, which is
rarely [2].

3 The discussion of related work (Section 6) mentions Self, a system that made the
opposite choice of modeling behaviour as a special kind of state.
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ParentList : List ()

vtable addParent: aVtable
[

parent isNil

ifTrue: [parent := aVtable]
ifFalse:
[parent isParentList

ifTrue: [parent add: aVtable]
ifFalse: [parent := ParentList new

add: parent;

add: aVtable;
yourself]]

]

ParentList lookup: messageName
[

| method |
self do: [:aVtable |
(method := aVtable lookup: messageName) notNil

ifTrue: [↑method]].
↑nil

]

Fig. 2. Adding multiple inheritance to a prototype-based language. We will store multi-
ple parents in ParentList objects; these extend (inherit behaviour from) List without
adding any additional state. We tell vtable how to addParent: by converting a single
parent vtable into a ParentList if necessary, then adding the new parent vtable to
the list. Next we define lookup: for ParentList to search for the messageName in each
parent consecutively. (The lookup: method already installed in vtable can be left in
place; it performs a depth-first search up the inheritance chain by invoking lookup: in
its parent slot, which can now be either a vtable or a ParentList.)

of the object it can be replaced and/or shared as desired, or even associated
implicitly with the object.4

Figure 4 shows the layout of objects in memory. An ordinary object pointer
(oop) points to the first byte of the object’s internal state (if any). The object’s
behaviour is described by a virtual table (vtable). A pointer to the vtable is
placed immediately before the object’s state, at offset -1 relative to the pointer.
This is done to preserve pointer identity for objects that encapsulate a foreign
structure, facilitating communication with the operating system and libraries. It
also allows compiled methods, identified by the address of their first instruction,
to be full-fledged objects.

A vtable is an object too, as shown in Figure 5, and has a reference to the
‘vtable for vtables’ before its internal state. This ‘vtable for vtables’ is its own

4 In the prototype language, tagged (odd) pointers and the null pointer are implicitly
associated with vtables for the behaviour of small integers and nil, respectively.
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M ?

M ?

B

?’ ?’’

Fig. 3. Minimal object model. An object is some opaque state ? on which a method
M can be invoked by name. To implement this model we need a mapping from method
names to method implementations. So, to invoke a method M in the object ? we find
the corresponding method implementation in a behaviour description B. An object
is therefore a tuple of behaviour B and state ?. Since behaviour is separate from the
object it describes, it is possible to share any given behaviour B between several distinct
objects ?, ?’, ?’’, . . .

object’s vtableobject
pointer

?
increasing

memory
addresses

Fig. 4. Implementation of minimal object. An object pointer (oop) points to the start
of the object’s internal state (if any). The object’s behaviour is described by a virtual
table (vtable). A pointer to the vtable is placed one word before the object’s state.

vtable’s vtablevtable
pointer

native codeselector

vtable for vtables

Fig. 5. Internals of vtables. A vtable maps a message name (selector) onto the ad-
dress of the native code that implements the corresponding method. The mapping
is determined by the vtable’s response to the lookup message, which is bound to an
implementation by the ‘vtable for vtables’.

vtable, as shown in Figure 6. It provides a default implementation of the lookup
method (for all vtables) that maps message names onto method implementations.
The state within a vtable supports this mapping. The lookup method therefore
dictates the internal structure of all vtables, but there is nothing special about
the initial ‘vtable vtable’ nor the structure of vtables; a new ‘vtable vtable’ can
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S -> I
lookup: -> <impl>

object’s vtable
vtable’s vtable

vtable’s vtable

object
pointer

? ?

object’s vtable
object

vtable’s vtable

indirectly determines internal structure

Fig. 6. Everything is an object. Every object has a vtable that describes its behaviour.
A method is looked up in a vtable by invoking its lookup method. Hence there is a
‘vtable vtable’ that provides an implementation of lookup for all vtables in the system,
including for itself. The implementation of this lookup method is the only thing in the
object model that imposes internal structure on vtables.

type method

object

symbol intern

vtable addMethod
vtable lookup

vtable allocate
vtable delegated

Table 1. Essential objects and methods. For vtables, addMethod creates an association
from a message name to a method implementation, lookup queries the associations to
find an implementation corresponding to a message name, delegated creates a new
vtable that will delegate unhandled messages to the receiver, and allocate creates
a new object within the vtable’s family (by copying the receiver into the new ob-
ject’s vtable slot). We include symbol’s intern method in this list since the end user
must have some way to (re)construct the name of a method. The vtables for vtable
and symbol delegate to the vtable for object, to ease the creation of singly-rooted
hierarchies in which these types are reused directly as end-user object types.

be created at any time to provide a new lookup method that implements a
family of vtables with arbitrarily different semantics and internal structure.5

5 The method addMethod, described below, also depends on the internal structure of
vtables and would be overridden in parallel with the lookup method when changing
their structure.
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let SymbolList = EmptyList

function symbol intern(self, string) =
foreach symbol in SymbolList
if string = symbol.string
return symbol

let symbol = new symbol(string)
append(SymbolList, symbol)
return symbol

Fig. 7. Method symbol.intern. Symbols are unique strings. A lazy implementer would
co-opt a vtable into use as a SymbolList holding previously-interned symbols.

function vtable addMethod(self, symbol, method) =
foreach i in 1 .. self.size
if self.keys[i] = symbol
self.values[i] := method
return

append(self.keys, symbol)
append(self.values, method)

Fig. 8. Method vtable.addMethod. If the method name symbol is already present, re-
place the method associated with it. Otherwise add a new association between the
name and the method.

3.1 Essential objects and methods

Table 1 lists the three essential object types and the five essential methods
that they implement. These methods are described below, with implementations
shown in pseudo-code intended to make their operation as clear as possible.
(Appendix B presents a complete implementation of these methods and types
in GNU C.)

Before we can construct an object system we need a way to add methods to
vtables, which requires a means to construct unique method names. Figure 7
shows a simple algorithm for creating ‘interned’ (unique) strings that are ideal
for use as method names.

To add methods to a vtable we send addMethod to it, passing a message
name (symbol) and the address of native code implementing the method. The
algorithm is shown in Figure 8.

Sending a message to an object begins by mapping a particular combination
of object and message into an appropriate method implementation. Figure 9
shows the algorithm for vtable’s lookup method that performs this mapping.

Invoking the allocate method in a vtable allocates a new object. The
object is made a member of the vtable’s family, as shown in Figure 10.
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function vtable lookup(self, symbol) =
foreach i in 1 .. self.size
if self.keys[i] = symbol
return self.values[i]

if self.parent "=nil
return self.parent.lookup(symbol)

return nil

Fig. 9. Method vtable.lookup. The default implementation searches the receiver’s keys
for the message name. If no match is found the search continues in the parent, if present,
otherwise the search fails by answering nil.

function vtable allocate(self, size) =
let object = allocateMemory(PointerSize + size)
object := object + PointerSize
object[-1] := self /* vtable */
return object

Fig. 10. Method vtable.allocate. A new object is created and its vtable (stored in the
word preceding the object) is set to the vtable in which the allocate method was
invoked, making the object a member of that vtable’s family. The size argument
specifies the size of the object’s state. Computation of the correct value for size is
dependent on the programming language implementation in which the object model is
being used.

function vtable delegated(self) =
let child =
if self "=nil
vtable allocate(self[-1], VtableSize)

else

vtable allocate(nil, VtableSize)
child.parent := self

child.keys := EmptyList
child.value := EmptyList
return child

Fig. 11. Method vtable.delegated. A new vtable is allocated and its parent set to
the vtable in which the delegated method is being invoked. These parent fields link
the vtables together into a single delegation chain.

Finally, the creation of new behaviours is provided by vtable’s delegated
method. It creates a new (empty) vtable whose parent is the vtable in which
delegated was invoked. The algorithm is shown in Figure 11.
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3.2 Message sending

To send a message M to an object O we look up M in the vtable of O to yield a
method implementation that is then called. The call passes the object O (which
becomes self in the called method) and any remaining message arguments. The
send algorithm is therefore:

function send(object, messageName, args...) =
let method = bind(object, messageName)
return method(object, args...)

The function bind is responsible for looking up the method name in the vtable
of object and just invokes lookup in the object’s vtable, passing messageName
as the argument:

function bind(object, messageName) =
let vt = object[-1]
let method =
if messageName = lookup

and object = VtableVT
vtable lookup(vt, lookup)

else

send(vt, lookup, messageName)
return method

Note that the recursion implied by send calling bind which in turn calls send (to
invoke the lookup method in the object’s vtable) is broken by ‘short-circuiting’
the send (calling the method vtable lookup directly) when the method name
is lookup and the object in which it is being bound is the ‘vtable vtable’.

3.3 Bootstrapping the object universe

The structure associated with the three essential types has to be created and
their vtables populated before the object model will behave as we have described.
Figure 12 shows one possible order in which this initialisation can take place:

1. The vtables for vtable, object and symbol are created and initialised ex-
plicitly.

2. The symbol lookup is interned and the method
vtable.lookup installed. At this point the send and bind functions de-
scribed in the previous section (i.e., message sending) will work.

3. The symbol addMethod is interned and the method
vtable.addMethod installed. At this point methods can be installed in a
vtable by sending addMethod to the vtable.

4. The symbol allocate is interned and the method
vtable.allocate installed. At this point new members of an object family
can be created by sending their vtable the message allocate, and this is
done to create the prototype symbol object.
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function initialise() =
/* 1. create and initialise vtables */
VtableVT := vtable delegated(nil)
VtableVT[-1] := VtableVT

ObjectVT := vtable delegated(nil)
ObjectVT[-1] := VtableVT
VtableVT.parent := ObjectVT

SymbolVT := vtable delegated(ObjectVT)

/* 2. install vtable.lookup */
lookup := symbol intern(nil, ”lookup”)
vtable addMethod(VtableVT, lookup, vtable lookup)

/* 3. install vtable.addMethod */
addMethod := symbol intern(nil, ”addMethod”)
vtable addMethod(VtableVT, addMethod,

vtable addMethod)

/* 4. install vtable.allocate */
allocate := symbol intern(nil, ”allocate”)
VtableVT.addMethod(allocate, vtable allocate)
symbol := SymbolVT.allocate(SymbolSize)

/* 5. install symbol.intern */
intern := symbol intern(nil, ”intern”)
SymbolVT.addMethod(intern, symbol intern)

/* 6. install vtable.delegated */
delegated := symbol.intern(”delegated”)
VtableVT.addMethod(delegated, vtable delegated)

Fig. 12. Bootstrapping the object model. Method implementations are called as func-
tions and vtable slots initialised explicitly to create the vtables for the three objects
types. The methods symbol intern and vtable addMethod are called explicitly to pop-
ulate the vtables. By the time the last two lines are reached, we have enough of the
object model in place that we can send messages to intern the symbol delegated and
install it in the vtable for vtables.

5. The symbol intern is interned and the method
symbol.intern installed. At this point new symbols can be interned by
sending intern to the prototype symbol object.

6. Finally, the symbol delegated is interned (by sending intern to symbol)
and the method vtable.delegated installed (by sending addMethod to the
vtable for vtables). At this point the object system behaves exactly as de-
scribed in this paper.

The initialised ‘object universe’ is shown in Figure 13.
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parent string "lookup"

string "addMethod"

string "allocate"

string "delegated"

string "intern"

ObjectVT

keys
values

parent

SymbolVT

keys
values

symbol_intern()

parent

VtableVT

keys
values

vtable_lookup()
vtable_addMethod()
vtable_allocate()
vtable_delegate()

nilstring

parent ref
vtable ref
slot ref
list

method_impl()

Legend

nil

symbol

Fig. 13. The object model universe. The larger objects are the vtables for the three
essential types (object, symbol and vtable). Just above SymbolVT is the prototype
symbol object, and to the right of it are the symbols that provide message names for
the five essential methods whose implementations are just below VtableVT on the right.
The symbol intern is bound to the method string intern in the SymbolVT and the
remaining methods are bound to their message names in VtableVT. Both SymbolVT
and VtableVT delegate to ObjectVT.

3.4 Implementation language bindings

To deploy the object model as part of a programming language implementation,
we need three things:

– implementation language structure definitions for the layouts of object,
symbol and vtable (implied by the default implementation of the lookup
method installed in the ‘vtable vtable’);

– implementations of the five essential methods in the implementation lan-
guage; and

– an implementation language method invocation mechanism, to call a method
implementation (returned from lookup) passing the receiver object and mes-
sage arguments.

Appendix B presents a complete implementation in the GNU C language. The
next section discusses two optimisations appearing in this implementation that
significantly improve the performance of message sending. It should be straight-
forward to adapt them to other programming languages.

3.5 Optimising performance

The performance of the GNU C versions of send() and bind() are improved
by two forms of caching.

Figure 14 shows a version of send that is implemented as a macro. This
allows each send site to remember the previous destination method returned
by bind in an inline cache. As long as the vtable of the next receiver does not
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#define send(OBJ, MSG, ARGS...) ({ \
struct object *o = (struct object *)(OBJ); \
struct vtable *thisVT = o-> vt[-1]; \

static struct vtable *prevVT = 0; \
static method t method = 0; \
(thisVT == prevVT \
? method \
: (prevVT = thisVT, \

method = bind(o, (MSG))))(o, ##ARGS); \
})

Fig. 14. Optimising send with an inline cache. The send macro memoizes the previous
vtable and associated closure returned from bind. bind is only called (and the memoized
closure and vtable values updated) if the invocation is to an object whose vtable is
not the same as the previous object’s vtable at the same invocation site; otherwise the
previously bound closure is reused immediately. This is safe provided the method name
is a constant at any given invocation site.

change, the previous destination method can be invoked directly without calling
bind again (assuming the message name at the send site is constant).

Figure 15 shows a version of bind that has been optimised with a global
method cache. Before invoking lookup the optimised bind looks for the vtable
and method name in a cache of previously bound methods. If it finds a match,
it returns the cached closure; if not, it invokes lookup and fills the appropriate
cache line.

These two optimisations are independent and can be used separately or to-
gether. Note that a realistic language implementation would need a way to inval-
idate these caches each time a change is made to vtable contents or inheritance
relationships. Mechanisms for doing this are simple but beyond the scope of this
paper.

4 Extensions that improve generality

Section 3 described the simplest possible arrangement of the object model, in
which each message name in a vtable is associated with the address of the native
code of a corresponding method implementation. We found that the usefulness
and generality of the object model were significantly improved by introducing
an additional level of indirection, so that a message name is associated with
a closure. Each closure contains two items: the address of the compiled code
implementing the method and some (arbitrary) data, as shown in Figure 16.
The bind function is modified to return a closure as shown in Figure 17; send
then invokes the method stored in the closure and passes the closure itself as an
argument to the method (in addition to the message receiver and arguments).
Method implementations are modified correspondingly, to accept the additional
argument.
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struct entry {
struct vtable *vtable;
struct object *message;
method t method;

} MethodCache[8192];

struct method t *bind(struct object *obj,

struct object *msg)
{

method t m;

struct vtable *vt = obj-> vt[-1];
unsigned long offset = hash(vt, msg) & 8191;
struct entry *line = MethodCache + offset;

if (line->vtable == vt && line->message == msg)
return line->method;

m = ((msg == s lookup) && (obj == vtable vt))

? vtable lookup(vt, msg)
: send(vt, s lookup, msg);

line->vtable = vt;
line->message = msg;

line->method = m;
return m;

}

Fig. 15. Optimising bind with a global method cache. The MethodCache stores vtables,
message names, and the associated method implementations. To bind a message name
within a vtable, a hash is computed from the vtable and name modulo the size of the
method cache to create a cache line offset. If the vtable and name stored in the cache
at that offset correspond to the vtable and name being bound, the stored method is
returned immediately. Otherwise lookup is invoked in the vtable to bind the method
name, and cache updated accordingly.

VtableVT

vtable

ClosureVT

method

data

native code

anything

selector

Fig. 16. Revised internals of vtables. A vtable maps message names onto closures,
containing the address of the native code to be executed and some arbitrary data. Since
closures are objects, they too have a pointer to a vtable describing their behaviour.

We believe the slight increase in complexity is more than justified by the
generality that is gained. For example:

– Figure 18 shows how closures can be used as assignable slots, creating an end-
user object model similar to that of traditional prototype-based languages.
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function vtable addMethod(myClosure, self,
aSymbol, aMethod) =

foreach i in 1 .. self.size
if self.keys[i] = aSymbol
self.values[i] := aMethod
return

self.keys.append(aSymbol)
self.values.append(new closure(aMethod, nil))

function send(object, messageName, args...) =
let closure = bind(object, messageName)
return closure.method(closure, object, args...)

function bind(object, messageName) =
let vt = object[-1]
let closure =
if messageName = lookup

and object = VtableVT
vtable lookup(nil, vt, lookup)

else

send(vt, lookup, messageName)
return closure

Fig. 17. Revised methods and functions. The method addMethod and the message
sending functions bind and send are modified to store and retrieve closures instead
of methods. Note that addMethod, like all method implementations, now accepts an
additional argument (the closure in which it was found by lookup).

VtableVTvtable
pointer ClosureVT

method

data
getter(closure, self)
{
  ^closure.data
}

slotName

ClosureVT

method

data

slotName:

setter(closure, self, value)
{
  ^closure.data.data := value
}

FunctionVT

FunctionVT

Fig. 18. Self-like slots. An assignable slot is implemented as a pair of methods: a ‘getter’
and a ‘setter’. The value of the slot is stored as the data in the closure of its getter
method. The data of the setter method’s closure contains a reference to the getter’s
closure, allowing the setter to assign into the getter’s data. A single implementation of
getter and setter can be shared by all closures associated with assignable slots.
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VtableVT
vtable ClosureVT

method

data

interp(closure, self)
{
  char *bytecodes = closure.data;
  ...
}

byte-compiled method 1

selector

ClosureVT

method

data

byte-compiled method 2selector

FunctionVT

Fig. 19. Mixed-mode execution. An interpreter (for bytecodes or other structures) can
be shared by any number of method closures. The structure to be interpreted is stored
in the data part of the closure. As described in the text, the closure is passed as an
argument to the method implementation (in this case the interpreter) from where its
data is readily accessible. To the caller there is no difference between invoking a native
method and invoking a byte-compiled method; the calling convention is the same.

– Figure 19 shows how closures are used to support mixed-mode execution [10].
A single interpreter method is shared between many closures whose data
fields contain the code to be interpreted. To the caller there is no difference
between invoking a natively compiled method and invoking an interpreted
method.

Other useful extensions that have been implemented include support for
‘Lieberman-style’ prototypes [7] which provide much stronger encapsulation than
the more common class-based inheritance. A detailed description of this exten-
sion is available online [9].

5 Evaluation

We validate the object model in two ways:

– By showing that it can be extended easily to support object models for
existing languages or significant and useful features drawn from them. We
do this by extending the prototype-based language (that uses the object
model directly, as described in Section 2.2) first to support the Javascript
object model (Section 5.1) and then by adding Traits (Section 5.2).

– By showing that its performance is sufficient for its use in serious language
implementations (Section 5.3).

5.1 Ease of use: Javascript objects

Javascript [3] has a simple object model based on delegation [7] in which objects
are dictionaries that map property names to their values. When an object is asked
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vtable get [ ↑closure data ]

get := [ (vtable vtable lookup: #get) method ]

Object set: prop to: val

[
| closure |
(closure := self vtable lookup: prop) notNil

ifFalse:
[closure := self vtable methodAt: prop put: get].

closure setData: val.

prop == # proto
ifTrue:

[self vtable parent: val vtable.

vtable flush].
]

Fig. 20. Javascript objects. Properties are implemented in a manner similar to that
of slots in Figure 18. However, setter methods were eliminated in favour of a set:to:
method that treats the proto property specially. If proto is assigned then the
parent of the object’s vtable is set to the value’s vtable, and any method caches are
flushed. (Note that the block expression assigned to get is evaluated; the value assigned
is the result of executing the block, not an unevaluated, literal block. Appendix A
explains this syntax further.)

for an unknown property, it forwards the request to its prototype (fetched from
its proto property). Properties are ‘copy-on-write’; assigning to a property
of an object either updates an existing property or creates a new property in
the object. All objects, functions and methods in Javascript are based on this
model.

Figure 20 shows one way of extending the object model to support these
semantics. Note that this implementation is not intended to be used directly
by programmers (although nothing prohibits this). Rather, a compiler is ex-
pected to translate Javascript expressions into method invocations. For example,
a Javascript field access ‘x.p’ is translated to ‘x p’ (send message p to x, invoking
its property getter). Similarly, the Javascript assignment ‘x.p = y’ is translated
to ‘x set: #p to: y’ (send message set:to: to x, invoking its property setter)
with arguments #p (the property name) and y (the new value).

5.2 Ease of use: Traits

Traits [11] are a powerful software composition mechanism. A trait is a collection
of methods without state that can be manipulated and combined with other
traits according to an algebra of composition, aliasing and exclusion. They are
interesting because they provide the power of multiple inheritance without the
complexity.
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Trait : Object ()

Object useTrait: aTrait [ aTrait addTo: self ]

Trait addTo: anObject [

self vtable keysAndValuesDo: [:selector :closure |
| newClosure |
newClosure := anObject vtable

traitMethodAt: selector
put: closure method.

newClosure setData: closure data]

]

vtable traitMethodAt: aSelector put: aMethod [

(self includesKey: aSelector)
ifTrue: [↑self errorConflict: aSelector]

↑self methodAt: aSelector put: aMethod

]

Fig. 21. Support for traits. Trait.addTo: adds the methods of the receiver to the
vtable of the argument. vtable.traitMethodAt:put: adds a method implementation
with a given name to the receiver, and signals an error if the method name is already
defined.

Figure 21 shows how the prototype-based language can be extended to sup-
port Traits. We can then easily implement the operations of the Traits ‘algebra’,
for example:

Trait + aTrait

[
↑Trait delegated
useTrait: self;

useTrait: aTrait
]

This creates a new empty trait and adds both the receiver and the argument
to it, composing their behaviours. (Method exclusion and method aliasing are
left as an exercise; they take no more than a few minutes each. Once all three
operations are available, you will have conforming traits implementation!)

With the above traits implementation in place, we can write code such as:

T1 : Trait ()
T1 m [ ’this is m’ putln ]

T2 : Trait ()
T2 n [ ’this is n’ putln ]

C : Object () [ C useTrait: T1 + T2 ]

C o [ self m; n ]
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(Note that in the above what looks like a literal block after the declaration
of C is actually an imperative; the program is executed from top to bottom,
sending useTrait: to C before continuing with the installation of method o in
C. Appendix A explains this further.)

5.3 Benchmarks

We measured the size and speed of a sample implementation written in GNU C
(see Appendix B), faithfully following the algorithms and structure presented in
this paper. All measurements were made on a 2.16 GHz Intel Core Duo.

The sample implementation is approximately 140 lines of code, containing:

– the three essential object types;
– one constructor function, for symbols;
– the five essential methods;
– macros for send and bind, as presented in Section 3.2, with optional inline

and global method caches; and
– an initialisation function that creates the initial objects and populates their

vtables to create the object system as shown in Figure 13.

The object code size for all essential objects and their methods, with unoptimised
send and bind, is 1,453 bytes. With the inline and global caches enabled, the
code size grows to 1,822 bytes.6 This should not be an issue for any but the most
severely resource-constrained environments.

Next we investigate the overhead of dynamic dispatch through the vtables.
We implemented the nfibs function (which has a very high ratio of message
sends, or function invocations, to computation) in optimised C with statically-
bound function calls and compared it with the object model using dynamically-
bound message sends and an inline cache. The results from running nfibs(34)
(performing 18,454,929 calls or method invocations) were:

type time % of static call
static call (C) 150 ms 100.0%
dynamic send 270 ms 55.6%

While the results are polluted a little by the arithmetic computation, they show
that a static C function call is only approximately twice as fast as a dynamically-
bound send through an inline cache. The actual overhead should be lower in prac-
tice since most code will perform more computation per call/send than nfibs.

Lastly, we implemented the example presented in Section 2 of this paper:
data structures suitable for a Lisp-like language. We implemented a ‘traditional’
length primitive using a switch on an integer tag to select the appropriate
implementation amongst a set of possible case labels. This was compared with
an implementation in which data was stored using the object model and the

6 Darwin 8.8.1, Intel Core Duo, gcc-4.0.1 (Apple build 5367).
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length primitive used send to invoke a method in the objects themselves.7 Both
were run for one million iterations on forty objects, ten each of the four types
that support the length operation. The results, with varying degrees of object
model optimisations enabled, were:

implementation time % of switch
switch-based 503 ms 100.0%
dynamic object-based 722 ms 69.7%

+ global cache 557 ms 90.3%
+ inline cache 243 ms 207.0%

This shows that an extensible, object-based implementation can perform at bet-
ter than half the speed of a typical C implementation for a simple language
primitive. With a global method cache (constant overhead, no matter how many
method invocation sites exist) the performance is within 10% of optimised C.
When the inline cache was enabled the performance was better than twice that
of optimised C. In a practical language implementation the above performance
gaps would be decrease in all cases as the amount of useful work per primitive
increases. (It is hard to conceive of a simpler primitive than length.)

5.4 Limitations

The object model relies on a method cache [2] for performance. It is necessary
to flush the cache after certain programming changes such as modifying a vtable
(adding or removing a mapping, or storing into the parent slot). This is easy
to do for both inline and global method caches, but is neither described in this
paper nor counted in our evaluation of the sample implementation.

We do not count constructors in the number of methods in the object im-
plementation. (There is no requirement for the constructors to be installed as
methods although in practice it is convenient to do so.)

We also do not count the vtable pointer as part of the end-user object struc-
ture, since it appears before the nominal start of the object.

Lastly, the implementation of bind and send cannot be exposed as easily as
the method lookup mechanism. This can be addressed by exposing the semantics
of functions in the same way that the object model exposes the semantics of mes-
saging (see Section 7). This permits almost unlimited flexibility to implement
mechanisms such as multimethods.

6 Related work

TinyObjects [6] also lets programmers remove limitations from the system in-
stead of ‘programming around’ them. It provides a Metaobject Protocol

7 A reference implementation, including the length benchmarks, can be downloaded
from: http://piumarta.com/software/id-objmodel
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(MOP) [5], at the end-user level of abstraction, that reflects on the implemen-
tation level and allows programmers to customise the object model to fit the
needs of their applications. We address the same problem by implementing the
object model and the equivalent of a very small MOP within a single level of
abstraction. This way the programmer can directly manipulate the objects and
methods that implement the semantics of their object model.

Smalltalk-80 [4] has methods (in classes Behaviour, Class and Metaclass) that
provide what is essentially an incomplete MOP. While these can be used by
programs (including the Smalltalk programming environment itself) to create
new subclasses and modify method dictionaries, they cannot be used to modify
the semantics of message sending itself nor the internal layout of objects.

McCarthy’s metacircular evaluator for LISP [8] demonstrated that it is pos-
sible for a language to be implemented (described) in itself. Such implementa-
tions are ‘open’: they allow programmers both to write ‘user programs’ and also
to modify or extend the semantics of the language. The circular implementa-
tion of the object model brings an equivalent openness to the object-messaging
paradigm.

Some systems, such as the Self programming language [12] and Lieberman’s
prototypes [7], present the user with simpler object models than the one we
describe. The cost of this simplicity is that some of the semantics of their object
models is hidden (slot lookup in particular) and cannot be modified by end user
code. Self also requires a significantly more complex runtime to run efficiently [1].
The model is much closer Self’s internal object model which uses maps (similar
to vtables) to describe the behaviour of entire clone families. Very promising
recent experiments with Self aim to expose the entire implementation to the
programmer [13].

7 Conclusions and further work

We presented a simple, extensible object model that exposes its own semantics
in terms of the objects and messages that it implements. This circularity in the
implementation results in surprising flexibility; end users have direct access to,
and control over, the implementation mechanisms of the object model itself. Our
experience with this object model has shown that it can be extended easily to
support powerful features such as sideways composition and mixed-mode execu-
tion. While it is not necessarily a friendly model for hand-written code, it is an
attractive target for automatic translation. It could also be an attractive target
for statically-typed languages, where the compiler can guarantee runtime type
safety.

Because it imposes no structure on end user objects, the model invites ex-
perimentation that might otherwise be difficult. For example, it allows a pointer
to a compiled native function to also be an object, to which messages can be
sent; a vtable in the word before the function prologue suffices. We envisage
going further and storing useful information about compiled code (stack layout,
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signature information, pre- and post-conditions, etc.) in the word before the
function’s vtable pointer (at offset -2).

This complements ongoing work with dynamic code generation that brings
the functional aspects of the object model (method implementations, method in-
vocation, and send and bind in particular) under the control of the programmer.
This work will be the subject of forthcoming publications.

Starting with the algorithms and C language bindings described in this pa-
per, implementing the object model in C took approximately three hours. The
essential objects and methods total 140 lines of source code. Not only is it tiny,
but it also scales well: in a slightly different form it has been in daily use by
several people for over a year. This model provides rich Smalltalk-like class li-
braries, implements its own compiler and dynamic code generator for multiple
architectures, and integrates seamlessly with platform libraries and garbage col-
lection. With the addition of a few lines of code it can support tagged immediate
quantities, and represent the object nil with the NULL pointer.
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A Prototype language syntax

The prototype-based language used for several examples in the text has a syntax similar
to that of Smalltalk-80 [4] with a few significant differences described here.

A.1 Type declarations

New types are introduced by creating a named prototype of that type. For example,

Derived : Base ( a b )

creates a variable ‘Derived’ (in a kind of ‘global namespace’) and assigns to it a new pro-
totype belonging to a family of objects that inherit behaviour and state from the family
of ‘Base’ (another prototype) and which extend that state with two new slots called
a and b. The new vtable for Derived is created automatically by sending delegated
to the vtable for Base; this vtable is then sent the message allocate to create the
prototype stored in Derived.

A.2 Method definitions

The body of a method follows its defining message pattern within square brackets. For
example,

Derived frobble: bob with: bill

[
↑bob frobbleWith: bill from: self

]

installs the method frobble:with: in the vtable for Derived by sending it the message
addMethod with the message name and method implementation as arguments.

A.3 Top-level statements

Arbitrary statements can be executed at the ‘top-level’ of the program (anywhere a
definition is allowed) by enclosing them in square brackets. For example,

[
’running DeepThought program...’ putln.
DeepThought new multiply: 6 by: 9.

]

announces to the user that an application is about to run, then instantiates and runs
it.
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A.4 Top-level definitions

Variables in the ‘global namespace’ can be bound to arbitrary values (not just to new
prototypes as described above). For example,

TheAnswer := [ 42 ]

creates a ‘global’ variable named TheAnswer and initialises it with the value of the last
expression in the block (in this case, the literal 42).

B Sample object model implementation

/* A sample implementation in GNU C of the object model described
* in this paper. This code, and that of the benchmarks discussed
* in the text, can be downloaded from:

* http://piumarta.com/software/id-objmodel
*/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define ICACHE 1 /* nonzero to enable point-of-send inline cache */
#define MCACHE 1 /* nonzero to enable global method cache */

struct vtable;
struct object;

struct symbol;

typedef struct object *oop;

typedef oop *(*method_t)(oop receiver, ...);

struct vtable

{
struct vtable *_vt[0];
int size;

int tally;
oop *keys;
oop *values;

struct vtable *parent;
};

struct object {
struct vtable *_vt[0];

};
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struct symbol

{
struct vtable *_vt[0];
char *string;

};

struct vtable *vtable_vt = 0;

struct vtable *object_vt = 0;
struct vtable *symbol_vt = 0;

oop s_addMethod = 0;
oop s_allocate = 0;
oop s_delegated = 0;

oop s_lookup = 0;
oop s_intern = 0;

oop symbol = 0;

struct vtable *SymbolList = 0;

extern inline void *alloc(size_t size)
{
RR struct vtable **ppvt=

(struct vtable **)calloc(1, sizeof(struct vtable *) + size);
return (void *)(ppvt + 1);

}

oop symbol_new(char *string)
{

struct symbol *symbol = (struct symbol *)alloc(sizeof(struct symbol));
symbol->_vt[-1] = symbol_vt;
symbol->string = strdup(string);

return (oop)symbol;
}

oop vtable_lookup(struct vtable *self, oop key);

#if MCACHE

struct entry {
struct vtable *vtable;
struct object *selector;

method_t method;
} MethodCache[8192];
#endif
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#if ICACHE

# define send(RCV, MSG, ARGS...) ({ \
oop r = (struct object *)(RCV); \
struct vtable *thisVT = r->_vt[-1]; \

static struct vtable *prevVT = 0; \
static method_t method = 0; \
(thisVT == prevVT \

? method \
: (prevVT = thisVT, \

method = _bind(r, (MSG))))(r, ##ARGS); \

})
#else /* !ICACHE */
# define send(RCV, MSG, ARGS...) ({ \

oop r = (oop)(RCV); \
method_t method = _bind(r, (MSG)); \
method(r, ##ARGS); \

})
#endif

method_t _bind(oop rcv, oop msg)

{
method_t method;
struct vtable *vt = rcv->_vt[-1];

#if MCACHE
unsigned int hash =

(((unsigned)vt << 2) ^ ((unsigned)msg >> 3))

& ((sizeof(MethodCache) / sizeof(struct entry)) - 1);
struct entry *line = MethodCache + hash;
if (line->vtable == vt && line->selector == msg)

return line->method;
#endif
method = ((msg == s_lookup) && (rcv == (oop)vtable_vt))

? (method_t)vtable_lookup(vt, msg)
: (method_t)send(vt, s_lookup, msg);

#if MCACHE

line->vtable = vt;
line->selector = msg;
line->method = method;

#endif
return method;

}

oop vtable_allocate(struct vtable *self, int payloadSize)
{

struct object *object = (oop)alloc(payloadSize);
object->_vt[-1] = self;
return object;

}

VPRI Technical Report TR-2006-003-a 28



struct vtable *vtable_delegated(struct vtable *self)

{
struct vtable *child =

(struct vtable *)vtable_allocate(self, sizeof(struct vtable));

child->_vt[-1] = self ? self->_vt[-1] : 0;
child->size = 2;
child->tally = 0;

child->keys = (oop *)calloc(child->size, sizeof(oop));
child->values = (oop *)calloc(child->size, sizeof(oop));
child->parent = self;

return child;
}

oop vtable_addMethod(struct vtable *self, oop key, oop method)
{
int i;

for (i = 0; i < self->tally; ++i)
if (key == self->keys[i])
return self->values[i] = (oop)method;

if (self->tally == self->size)

{
int sz= (self->size *= 2);
self->keys = (oop *)realloc(self->keys, sizeof(oop) * sz);

self->values = (oop *)realloc(self->values, sizeof(oop) * sz);
}

self->keys [self->tally ] = key;

self->values[self->tally++] = method;
return method;

}

oop vtable_lookup(struct vtable *self, oop key)
{

int i;
for (i = 0; i < self->tally; ++i)

if (key == self->keys[i])

return self->values[i];
if (self->parent)

return send(self->parent, s_lookup, key);

fprintf(stderr, "lookup failed %p %s\n",
self, ((struct symbol *)key)->string);

return 0;

}
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oop symbol_intern(oop self, char *string)

{
oop symbol;
int i;

for (i = 0; i < SymbolList->tally; ++i)
{
symbol = SymbolList->keys[i];

if (!strcmp(string, ((struct symbol *)symbol)->string))
return symbol;

}

symbol = symbol_new(string);
vtable_addMethod(SymbolList, symbol, 0);
return symbol;

}

void init(void)

{
vtable_vt = vtable_delegated(0);
vtable_vt->_vt[-1] = vtable_vt;

object_vt = vtable_delegated(0);
object_vt->_vt[-1] = vtable_vt;
vtable_vt->parent = object_vt;

symbol_vt = vtable_delegated(object_vt);
SymbolList = vtable_delegated(0);

s_lookup = symbol_intern(0, "lookup");
vtable_addMethod(vtable_vt, s_lookup, (oop)vtable_lookup);

s_addMethod = symbol_intern(0, "addMethod");
vtable_addMethod(vtable_vt, s_addMethod, (oop)vtable_addMethod);

s_allocate = symbol_intern(0, "allocate");
send(vtable_vt, s_addMethod, s_allocate, vtable_allocate);

symbol = send(symbol_vt, s_allocate, sizeof(struct symbol));

s_intern = symbol_intern(0, "intern");

send(symbol_vt, s_addMethod, s_intern, symbol_intern);

s_delegated = send(symbol, s_intern, (oop)"delegated");

send(vtable_vt, s_addMethod, s_delegated, vtable_delegated);
}
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