
Viewpoints Research Institute, 1209 Grand Central Avenue, Glendale, CA 91201 t: (818) 332-3001 f: (818) 244-9761

 Cooperating Solvers vs. Cooperating Languages

 Alan Borning

VPRI Memo M-2012-005

VPRI Memo M-2012-005

squeak
Typewritten Text
This material is based upon work supported in partby the National Science Foundation underGrant No. 0639876. Any opinions, findings, andconclusions or recommendations expressed in thismaterial are those of the author(s) and do notnecessarily reflect the views of the NationalScience Foundation.

Cooperating Solvers vs. Cooperating Languages

Alan Borning

31 August 2012

1 Introduction

We initially started designing an architecture for cooperating constraint solvers,
but quickly moved to designing an architecture for cooperating languages. It
seems worth revisiting this issue and more carefully differentiating the ap-
proaches. So in this informal note I first sketch the two approaches (in as
different forms as possible), then discuss how things are actually less distinct,
and finally describe some additional issues around cooperating languages.

2 Cooperating Constraint Solvers

The goals of this version are:

• to design a framework to accomodate an extensible collection of constraint
solvers that can interoperate

• to populate that framework with some useful solvers

• to design an API for the framework that lets it be used from your favorite
language (or even multiple APIs for different languages)

• to use the framework to solve some useful problems

Designing the framework includes defining how the problem is represented
and decomposed into different pieces, and how the solvers communicate. It also
includes defining an “executive” that can decide which solvers to use and when,
perhaps querying the solvers themselves regarding their capabilities. Assuming
we are at least for now still writing in Squeak, the solvers might be in Squeak
(e.g., Cassowary, Ted’s exhaustive search solver, or DeltaBlue), or external (e.g.,
Z3, Kodkod).

However, the cooperating solvers don’t attempt to be interpreters for full
programming languages. Instead, they are used from some language (or from
multiple languages). The Cassowary API is an example of an API for a solver
framework: there is a class for constraints, for constrainable variables, and for
instances of the Cassowary solver.

1

VPRI Memo M-2012-005

In the simplest form of this project, constrained variables aren’t the same
as ordinary variables in the host language, and the host language doesn’t have
any built-in knowledge of them or of the solvers – you have to explicitly invoke
it. This is simple and flexible, and also means that the programmer can easily
just bypass the constraint solver. Again, the Cassowary API is an example.

The “Architectures for Cooperating Solvers” memo of 18 March 2012 de-
scribes a multi-level architecture for cooperating solvers. The constraint graph
is partitioned into regions joined by variables that are read-only for all but one
of the solvers. The overall graph is acyclic. This gives a simple way for the
top-level solvers to cooperate. Within a region, there can also be subregions
with again cooperating solvers that permit richer kinds of interaction. The
memo also references related work in the area (there is a reasonable amount
of work on cooperating solvers already, for example SMT solvers), and outlines
some additional goals, such as supporting soft constraints as well as required
ones, read-only annotations on variables, incremental updating of solutions, and
perhaps compilation.

3 Cooperating Languages

In this version of the project, we do have cooperating languages rather than
just cooperating solvers: at least some of them should be Turing-complete. The
multi-level architecture for cooperating solvers actually still seems like a good
one for this version as well: at the top level, programs still communicate by
shared variables, which are read-only for all but one of the region. There can
also be subregions with cooperating languages that interact in richer ways. (It’s
also reasonable to start with just the simple version, with no subregions.)

There are still some unresolved issues I think:

• How is time handled in the different regions? Presumably each region (or
perhaps even each subregion) should have its own clock and notion of time
— a single global clock doesn’t seem right.

• How does this interact with KScript and streams? Do the shared variables
sometimes hold streams of values?

• Does there need to be a host language in which the DSLs are embedded?
Or are they standalone, with just a “wiring language” for expressing the
interconnections?

Note that this design uses values communicated via the shared variables. An-
other very standard way for processes to communicate is via message streams.
(These are probably equivalent at some level — you can simulate message
streams with a stream of values where the type of the value is “message”; and
you can simulate a stream of values with messages that just hold a “here’s a
new value” message. I think.)

2

VPRI Memo M-2012-005

4 Blurring the Projects

The two versions aren’t mutually exclusive: we could do them both, and have
cooperating languages, with some of the languages calling solver libraries.

Further, for the different cooperating solvers we can define languages in
which to write the constraints. The Things language is an example, and also
illustrates how we may still want some external language to manipulate the ob-
jects. (There could be an interactive editor that lets the user construct electrical
circuits or bridges or whatever; this could also be done programmatically, using
iteration, conditionals, and recursion in the commands to build some structure.)

Not all of the DSLs need to be Turing complete, but certainly at least one
should be.

How far can we go with DSLs? I think we still need a general purpose
language, if nothing else for expressing computations where we don’t (yet) have
a clean, very compact description in a DSL. Even if the goal is to express all
aspects of a personal computer environment using concise, specialized DSLs,
a reasonable development strategy would be to evolve toward that, with parts
written initially in some general language in a less elegant way. (Is KScript
intended to be that language?)

Finally, are the programs written in the DSLs essentially standalone, with
just a “wiring language” for expressing the interconnections? Or are the pro-
grams in a DSL embedded in a general-purpose language, in the same way that
currently KScript programs can be written as strings in Squeak and called from
Squeak?

3

VPRI Memo M-2012-005

