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This memo was motivated by these questions:

What is the next organizational level above a Smalltalk Object?

In a complex object with many subparts, it is hard to tell which parts belong to the main object

and which are other independent entities.

How can we have object "Aspects" that really work?

Starting with Bobrow's PIE at PARC, there have been many implementations of objects with

component parts.  Many of these have been hard to use, and unclear.

What would "Stateful Traits" look like? Can we stop overloading inheritance?

We need to get away from using class hierarchy as the basis for specializing behavior.  In

Morphic, we add behavior to a graphical object by making a new subclass.  In Squeak, there are

540 subclasses of Morph.  We need a way to make these by composition of basic properties and

behaviors.

How can objects be only as thick or as thin as needed?

"Thick Class Object" means that a basic graphical object comes with many capabilities built in. 

It is important to not carry along the parts needed for the full capability when an object does not

use them.  Objects fall many different places in the spectrum from thin to thick.  They should

only take storage for what they use.

Can we really have components that Mix and Match?

The Membrane solution comes is inspired by Yoshiki's iObject project.  And, also by Ian's

proposal that "Object = ID + Name Space”.

A membrane object in blue, with component parts in green.  Each component has instance

variables (upper black lines) and methods (lower black lines).  Communication between parts

needs to be easy.
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The Membrane is just an Identity Dictionary. The Membrane is an address space.

Parts inside are normal Smalltalk objects. Contents, border, fill, morphic role, layout, etc.

In code, "self" is the part, and "whole" is the outside membrane.

Each part uses the other parts heavily.  References to the 'siblings' of a part is easy.  That is we

need an easy path to other parts from inside a part.  In the part itself, getters for parts are

generated automatically.  Part X might say (self contents addLast: foo).  Which uses this method

in part X.

contents

        ^ whole at: #contents

Parts are as independent as possible.  A given part can depend on a part of another kind being

present.  Many other parts depend on the "contents" part (that holds sub-objects).

Each kind of part has several versions.  These are upward compatible.  Borders may be simple or

complex.  Another part may depend on border being present, may install a default if it is not

present, and will work when a more complex version is present.

Any part can be dropped in -- it carries all it needs with it, including state.

Motto:  "Being a partner with other objects is more important than owning other objects."

Examples of parts:

In Etoys, each viewer category is a part.

Geometry                       Script Control

Motion                           Layout

Fill                            Sound

Border                            Logo

Color                              Costume control

Pen                              Overlap tests

Drag & Drop

At my presentation, Alan suggested that communication between parts be by Linda-like publish

and subscribe.

This memo is a clarification of my talk and slides from 21 Apr 2009.
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